An electromagnetic shielding tube has a resin inner layer as the innermost layer, a resin outer layer as the outermost layer, and a metal metal-layer between the inner layer and the outer layer. The bonding strength between the outer layer and the metal layer is made weaker with respect to the bonding strength between the inner layer and the metal layer. For example, while an adhesive layer is provided between the inner layer and the metal layer, the outer layer can be directly extrusion coated onto the metal layer without providing an adhesive layer or the like between the outer layer and the metal layer.
In accordance with embodiments of the present disclosure, a system may include a temperature sensor configured to sense an inlet ambient temperature associated with an information handling system, a cooling subsystem comprising at least one cooling fan configured to generate a cooling airflow in the information handling system, and a thermal manager communicatively coupled to the temperature sensor and the cooling subsystem and configured to, based on the inlet ambient temperature, a maximum power consumption level of the information handling system, a maximum airflow rate capable of being generated by the at least one cooling fan, and a hardware configuration of the information handling system, calculate a lowest possible maximum exhaust temperature for the information handling system.
A liquid handling (LH) block of an Information Handling System (IHS) having a first transfer conduit having node-receiving intake port/s sealably engaged for fluid transfer to node intake port/s of Liquid Cooled (LC) node/s and having supply connection/s. A second transfer conduit has node-receiving outlet port/s sealably engaged for fluid transfer to LC node output port/s of the LC node/s and having return connection/s. A radiator includes a portion of the second transfer conduit. A cooling liquid distribution subsystem has a user selectable first and second sets of liquid conduits connectable to the module in one of an open-loop configuration utilizing facility supplied cooling liquid and a closed-loop configuration to recirculate cooling liquid between the block radiator and the node-level system of conduits.
An electronic rack includes a plurality of information technology (IT) components arranged in a stack, and a rack power supply having a voltage converter and a voltage regulator. The rack power supply to receive an input voltage from a power source, where the voltage converter is to convert the input voltage into an intermediate voltage, where the voltage regulator is to regulate the intermediate voltage to generate a regulated voltage to be supplied to the plurality of the IT components. Each electronic rack includes a fan system having one or more fan units coupled to the rack power supply to provide cooling air to reduce an operating temperature of the IT components, where each of the fan units is to receive the intermediate voltage without going through the voltage regulator and to provide power to a fan of the fan unit.
Embodiments of the present invention disclose a heat dissipation assembly including: a cage, a TEC assembly, a mounting kit, an elastic carrier, and a heat pipe, where a window is provided in a side face of the cage, the TEC assembly is located on an outer side of the cage, and a cold side of the TEC assembly passes through the window and thermally communicates with the heat emitting device in the cage; the mounting kit is configured to mount the TEC assembly and enable the TEC assembly to move in a direction leaving or approaching the heat emitting device; and a heat absorption portion of the heat pipe is mounted on the elastic carrier, and the heat absorption portion that is of the heat pipe and that is mounted on the elastic carrier thermally communicates with a hot side of the TEC assembly.
Provided is an arrangement for cooling channels in an electrode column assembly of an electric arc furnace, wherein the lower part of the electrode column assembly is provided with a contact shoe ring formed of a plurality of contact shoe elements, a pressure ring formed of a plurality of pressure blocks, and a heat shield located above the pressure ring and formed of a plurality of heat shield segments. The contact shoe elements and/or the pressure blocks are provided with channels for a cooling liquid to flow therein. The channels made in the material of the contact shoe elements and/or the pressure blocks extend obliquely downwards from the upper ends of said contact shoe elements and/or the pressure blocks near to the lower ends of the same. At least two of said oblique channels join together at their lower ends to form a continuous channel.
Server equipment having a fool-proof structure includes a casing and a tray. The casing includes a storage unit area, a plurality of motherboard areas, a back plate, insertion slots and a fool-proof device. The fool-proof device selectively has an engagement member at a first height or an engagement member at a second height. The tray includes a motherboard, a connection card and a protection housing. When the protection housing is in contact with the engagement member at the first height, the connection card is correspondingly inserted into the insertion slot. When the protection housing is in contact with the engagement member at the second height, the connection card is spaced from the insertion slot by a distance. Accordingly, the connection card is prevented from being inserted to a wrong insertion slot, so damage to the connection card is avoided.
A server chassis includes a tray, two inner rails and two outer rails. The tray includes a bottom plate. Two opposite side walls extend from an edge of the bottom plate. A sliding latch is disposed at an outer side of each of the side walls. Each of the two inner walls is disposed at the outer side of the corresponding one of the two side walls. Each of the inner rails is disposed with a through slot corresponding to the sliding latch. The through slot extends longitudinally along the inner rail. The sliding latch is inserted in the through slot to be movable along the through slot. The two outer rails receive the two inner rails respectively, and each of the inner rails is movable outwardly from one end of the corresponding outer rail.
An insulating component having a first core accommodating section that receives a first magnetic body core, a second core accommodating section that receives a second magnetic body core, and a locking section. The first core accommodating section has two parallel core leg section accommodating sections that individually surround one of at least two leg sections of the first magnetic body core. The second core accommodating section is configured to surround the second magnetic body core. An aperture section is formed in the insulating component between the two parallel core leg section accommodating sections. The locking section is configured to be locked to a bus bar inserted into that aperture section.
According to one embodiment, a display device includes a display, a circuit substrate, connector terminals, a first cover, a second cover, and a fastening member. The circuit substrate includes a first side and a second side adjacent to the first side, and overlaps a second face of the display. The connector terminals are disposed at a vicinity of each of the first side and the second side. The first cover includes a first opening exposing the connector terminals therethrough, and covers the second face. The second cover includes a linking portion and a noncircular through hole, and covers the first opening across the first side and the second side. The linking portion is positioned in between the first side and the second side. The fastening member is inserted through the through hole so as to fix the second cover, the circuit substrate, and the display.
A multilayer ceramic capacitor includes a ceramic element body including first and second external electrodes on first and second end surface sides of the ceramic element body, respectively. The first external electrode includes an Ni plating layer and an Sn plating layer defining a plating layer. The second external electrode includes an Au plating layer defining a plating layer.
A step etched metal electrical contact including a main body formed from a metal sheet defining a metal tab sized to match a die/device terminal and an electrical clearance aperture, electrical clearance trench, and/or an electrical clearance gaps. A heat sink may be combined with the step etched metal electrical contact to provide double sided module cooling for increased thermal performance of power modules.
An electrode arrangement which is based on elastomer and has elasticity and flexibility may include: an elastomer substrate; first and second pads arranged over the substrate; and a conductive wire connecting the first and second pads. One or more regions of the conductive wire may be bent in a vertical or horizontal direction with respect to the substrate.
A circuit board is described which includes a layer composite with at least one dielectric layer which includes a planar extension in parallel with respect to an xy-plane which is spanned by an x-axis and a y-axis perpendicular thereto, and which includes a layer thickness along a z-axis which is perpendicular with respect to the x-axis and to the y-axis; and at least one metallic layer which is attached to the dielectric layer in a planar manner. The layer composite along the z-axis is free from a symmetry plane which is oriented in parallel with respect to the xy-plane, and the dielectric layer includes a dielectric material which has an elastic modulus E in a range between 1 and 20 GPa and along the x-axis and along the y-axis a coefficient of thermal expansion in a range between 0 and 17 ppm/K. A method of manufacturing such a circuit board is also described. Further, a method of manufacturing a circuit board structure comprising two asymmetric circuit boards and a method of manufacturing two processed asymmetric circuit boards from a larger circuit board structure is described.
The disclosure specifies a circuit arrangement having electronic first components arranged on a circuit board and lying at high-voltage potential. The circuit arrangement includes functionless, electronic second components lying at high-voltage potential, which are arranged on the circuit board adjacent to the electronic first components, and configured to reduce the maximum electrical field strength between the first components and a reference potential and/or between pads of the circuit board and the reference potential. Through the additional, functionless components, the maximum electrical field strength between electronic components at high voltage and at a reference potential will be reduced. The disclosure also specifies a high voltage generation unit and an x-ray generator.
A processing chamber including multiple plasma sources in a process chamber top. Each one of the plasma sources is a ring plasma source including a primary winding and multiple ferrites. A plasma processing system is also described. A method of plasma processing is also described.
A power over ethernet lighting system includes a plurality of nodes electrically connected to a power/communication bus. Each of the nodes includes a PoE interface, a micro-controller and a PoE driver electrically connected to a PoE luminaire. At least one of the nodes is an emergency management node that includes a rechargeable battery and a PoE battery charger. The system has a maintained mode in which the PoE luminaire of each of the nodes is powered by electricity from the power/communication bus as controlled by the respective micro-controller, which is powered by one of the bus and the rechargeable battery. The system has an emergency mode characterized by a power loss on the power/communication bus, with the PoE luminaire of the emergency management node powered by the rechargeable battery as controlled by the micro-controller, which is also powered by the rechargeable battery.
A hybrid dimming controller for a lighting control system providing isolated class 1 and class 2 dimming outputs. The controller has two NEC class 1 outputs for providing independent low-voltage dimming-control signals for two lighting loads and two NEC class 2 outputs for providing the same two independent dimming control-signals for the lighting loads. Thus, the controller has both a class 1 and a class 2 output for delivering the same dimming-control signal for each of the two lighting loads while maintaining within the controller the isolation that is required between class 1 and class 2 circuits.
The present disclosure is directed to an alternating current (AC) to AC converter circuit for independently adjusting a current and voltage to adjust a light output of a light operating on AC power. In one embodiment, the AC to AC converter circuit includes a microprocessor, a first switch coupled to the microprocessor, a power factor controller (PFC) module coupled to the first switch, wherein the first switch is controlled by the microprocessor in accordance with a desired power output, one or more boost switches coupled to the PFC module, wherein the one or more boost switches are controlled by the PFC module as a function of an operation of the first switch and one or more load switches coupled to the one or more boost switches, wherein the one or more load switches are controlled by the microprocessor in accordance with the desired power output.
A lighting device includes a current outputter, a load characteristic obtainer and a controller. The current outputter is configured to supply a current to a light source of at least one light source unit. The load characteristic obtainer is configured to obtain load information from a corresponding load information outputter of the at least one light source unit, by supplying the electric power to the load information outputter. The controller is configured to control the current of the current outputter, which is supplied to the light source, based on the load information. The load characteristic obtainer is configured to supply the electric power to the corresponding load information outputter only during a time period of obtaining the load information, but stop supply of the electric power to the corresponding load information outputter during a time period other than the time period of obtaining the load information.
For an LED lighting application, overshoot-protection circuitry prevents an LED controller, such as a matrix lighting controller (MLC) that controls an array of LEDs, from falsely detecting an open-circuit condition in an LED controlled by the LED controller, by limiting the magnitude of an overshoot voltage (due to long-wire parasitic inductances) from occurring when a switch in the LED controller that is used to control the LED is turned off.
A lighting apparatus comprises the following elements. A first set of light emitting diode module includes a variety of light emitting diode elements, wherein different types of light emitting diode elements have different color temperature characteristics. A driving circuit supplies power to the first set of light emitting diode module, such that the plurality of light emitting diode elements emit light. Moreover, the driving circuit may supply currents with different total values, and the optical characteristics of the first set of light emitting diode module change accordingly, so as to change color temperatures.
A lighting fixture includes a driver module and a separate light engine module, which has a solid-state light source and light engine memory. The driver module is electrically coupled to the light engine module and configured to drive the solid-state light source based on drive data. The drive data defines how the driver module should drive the solid-state light source to generate light with at least one defined lighting characteristic. The drive data may define or be used to identify the signal characteristics, such as drive currents, voltages, waveforms, and the like that must be provided by the driver module to drive the solid-state light source. The drive data is stored in the light engine memory of the light engine module, and the driver module is configured to retrieve the drive data from the light engine memory and drive the solid-state light source based on the drive data.
A linear light-emitting diode (LED)-based solid-state lamp comprising an LED driving circuit, LED arrays, at least one pair of electrical contacts, and a controller, is used to replace a fluorescent tube or a conventional LED tube lamp in an existing lamp fixture. The controller and the at least one pair of electrical contacts are configured to perform galvanic isolation between the controller and the LED driving circuit connecting with LED arrays. Thus an overall through-lamp electric shock current can be limited only from the controller, eliminating a substantial electric shock current flow through the LED driving circuit and subsequently the LED arrays. The scheme can effectively reduce a risk of electric shock and an internal fire hazard to users during relamping or maintenance.
A data communication method, where a first device receives a request message from at least one second device, where the request message requests the first device to forward group data, and the request message carries a group identifier. The first device returns a response message to the at least one second device, where the response message carries a layer-2 address and an Internet Protocol (IP) address corresponding to the group identifier, and the first device sends the group data using the layer-2 address when receiving the group data sent by a third device to the IP address.
A mobile terminal device is connected to a network using a packet routing function of another mobile terminal device. Communication between respective mobile terminal devices can be performed in each of a plurality of tethering connection systems. When performing tethering communication, a mobile terminal device having tethering function becomes a master device and a mobile terminal device having no tethering function becomes a slave device. When both mobile terminal devices have tethering function, one mobile terminal devices becomes the master device and the other becomes the slave device. Before starting the tethering communication, state information for calculating an expected battery operating time of each mobile terminal device is acquired. A tethering connection system and a master-slave relationship are selected to maximize the expected operating time based on the remaining battery level and the expected power consumption of each mobile terminal device when starting the tethering communication.
A method of operating a wireless ad hoc network includes determining a group of intermediate devices on communication paths from a first source device and a second source device to a set of destination devices. Each intermediate device of the group has a communication path to a corresponding subset of destination devices such that a communication path exists from both the first source device and the second source device to each destination device of the set of destination devices. Each intermediate device of the group of intermediate devices is configured with a first linear network code corresponding to the first source device, and with a second linear network code corresponding to the second source device. The intermediate devices are also configured with an additional linear network code between itself and its corresponding subset of destination devices.
A method for operating a wireless device configured for wireless communications includes receiving a reporting request including a reporting condition that information stored at the device is required to satisfy in order for the device to transmit the information, and initiating an uplink transmission procedure to transmit the information when the reporting condition is satisfied.
The present invention relates to a method and apparatus in which a terminal performs contention-based access in a mobile communication system, wherein the method comprises: a sensing step of sensing whether or not contention-based access is allowed for at least one logical channel; a receiving step of receiving a contention-based reverse grant from a base station; and a transmitting step of transmitting data to the base station through the logical channel for which the contention-based access is allowed. According to the present invention, contention-based access can be efficiently performed, and the reliability of transmission can be ensured.
Methods and apparatuses for communicating in a wireless communication network are disclosed. For example, one method includes determining, by a first access point, a polling schedule for communicating with one or more wireless stations on a first wireless communication channel, the polling schedule for a second access point on a second wireless communication channel. The method further includes transmitting, by the first access point, on the first wireless communication channel, transmission information to the one or more wireless stations, wherein the transmission information comprises information for the one or more wireless stations to receive a transmission from the second access point on the second wireless communication channel. The method further includes transmitting, by the first access point, on the first wireless communication channel, one or more packets to at least one of the one or more wireless stations in accordance with the polling schedule.
The invention provides a mobile communication device having a first wireless communication module with a strong driving circuit, and a second wireless communication module with a weak driving circuit. The first wireless communication module is coupled to the second wireless communication module via only one wire. The first wireless communication module sends a first traffic pattern of a first wireless transceiving to the second wireless communication module via the wire, and receives a second traffic of a second wireless transceiving from the second wireless communication module via the wire. The second traffic pattern indicates whether the second wireless communication module decides to use a remaining period of time, in which the first wireless communication module is not required to perform wireless transceiving, for the second wireless transceiving.
The embodiments disclose a method for scheduling radio resources in a radio communication network. The method comprises obtaining two or more MAC modes to be used for scheduling radio resources; and partitioning the radio resources into multiple resource blocks, each of which associates with one of the two or more MAC modes. Each of the two or more MAC modes is used to schedule associated resource block. Meanwhile, the embodiments also disclose a method for transmitting traffic in the radio communication network. The method comprises selecting a MAC mode from a list of active MAC modes for the traffic. Each MAC mode in the list of active MAC modes associates with respective resource blocks and is used to schedule the associated resource block. The traffic is transmitted over resource scheduled by the selected MAC mode.
A method of data transmission over guard sub-carriers is provided in a multi-carrier OFDM system. Adjacent radio frequency (RF) carriers are used to carry radio signals transmitted through adjacent frequency channels. A plurality of guard sub-carriers between adjacent frequency channels are aligned and identified for data transmission in a pre-defined physical resource unit. The identified guard sub-carriers do not overlap with normal data sub-carriers of the radio signals transmitted through the adjacent frequency channels. At least one of the identified guard sub-carriers is reserved as NULL sub-carrier. A flexible multi-carrier transceiver architecture is also provided in a multi-carrier OFDM system. Different multi-carrier and/or MIMO/SISO data transmission schemes are implemented by adaptively reconfigure same hardware modules including common MAC layer module, physical layer entities, and RF entities. Furthermore, the flexible multi-carrier transceiver architecture can be used to support data transmission over guard sub-carriers.
Provided is a radio communication base station device which can prevent lowering of use efficiency of a channel communication resource for performing a frequency diversity transmission when simultaneously performing a frequency scheduling transmission and the frequency diversity transmission in a multicarrier communication. In the device, a modulation unit (12) executes a modulation process on Dch data after encoded so as to generate a Dch data symbol. A modulation unit (22) executes a modulation process on the encoded Lch data so as to generate an Lch data symbol. An allocation unit (103) allocates the Dch data symbol and the Lch data symbol to respective subcarriers constituting an OFDM symbol and outputs them to a multiplexing unit (104). Here, when a plurality of Dch are used for a Dch data symbol of one mobile station, the allocation unit (103) uses Dch of continuous channel numbers.
The architecture of the high-speed shared service provides a Node B yielding various sets of information that answer a set of basic questions that a data service needs. Many potential measurements the Node B can make are provided to the RNC to enable a resource manager to perform certain functions and which can be used to answer the set of basic questions.
The application pertains to a method for communicating downlink control information. A base station maps an enhanced physical downlink control channel (E-PDCCH) sequentially to resource elements for transmitting the E-PDCCH in each orthogonal frequency division multiplexing (OFDM) symbol according to an order of OFDM symbols used by the E-PDCCH of a user equipment (UE). The E-PDCCH is sent to the UE from the base station by using the resource elements, where the E-PDCCH and a physical downlink shared channel (PDSCH) invoked by the E-PDCCH are frequency-division multiplexed. Because the E-PDCCH is mapped sequentially to resource elements for transmitting the E-PDCCH in each OFDM symbol according to an order of OFDM symbols used by the E-PDCCH of the UE, different control channel elements of E-PDCCHs at different aggregation levels will not include a same E-PDCCH modulation symbol, thereby ensuring that the UE judges a start position of the E-PDCCH correctly.
A method for transmitting uplink control information and to an apparatus therefor. The method includes: selecting one uplink control channel resource corresponding to a plurality of HARQ-ACKs from among a plurality of uplink control channel resources; and transmitting a bit value corresponding to the plurality of HARQ-ACKs using the selected uplink control channel resource.
Methods and systems for transmitting uplink control information and feed back are disclosed for carrier aggregation systems. A user equipment device may be configured to transmit uplink control information and other feedback for several downlink component carriers using one or more uplink component carriers. The user equipment device may be configured to transmit such data using a physical uplink control channel rather than a physical uplink shared channel. The user equipment device may be configured to determine the uplink control information and feedback data that is to be transmitted, the physical uplink control channel resources to be used to transmit the uplink control information and feedback data, and how the uplink control information and feedback data may be transmitted over the physical uplink control channel.
A device may receive network congestion information relating to one or more connections. The network congestion information may identify respective utilizations of the one or more connections. The one or more connections may be associated with one or more access points. The device may cause the network congestion information to be provided to a set of user equipments (UEs) via a multicast transmission to cause one or more UEs, of the set of UEs, to switch from a first connection, of the one or more connections, to a second connection, of the one or more connections, based on the network congestion information. The one or more UEs may be connected to a network via a multicast connection.
Embodiments of the disclosure provide a method, an apparatus, a network node, and a computer program product for transmitting D2D synchronization signals. According to the method, D2D synchronization signals are received from a first network node. A hop number of the D2D synchronization signals is determined based on radio resources of the D2D synchronization signals. Whether to transmit the D2D synchronization signals to a second network node is determined based on the hop number.
An information processing system includes a GW and a portable communication device. The GW includes a transmitter that transmits, to the portable communication device that is located within a given area, a request to transmit information; a receiver that receives a response to the request to transmit information from the portable communication device; and a data acquisition controller that, when the number of responses received is larger than a maximum allowable number to the GW, adjusts the area to which the request to transmit information is transmitted such that the number of responses is equal to or smaller than the maximum allowable number and that, when the number of responses is equal to or smaller than the maximum allowable number to the GW, adjusts an area to which the request to transmit information is transmitted, which is an area different from the area to which the request has been transmitted.
A special purpose mobile communication terminal is provided. The special purpose mobile communication terminal includes: a receiver unit, configured to receive a first mobile communication signal and a second mobile communication signal respectively transmitted from base stations in a restricted area and an unrestricted area; and a control unit, configured to judge the mobile communication signals received by the receiver unit, the control unit being configured to reduce a transmitting power or not transmit an electromagnetic signal if the first mobile communication signal is received and a signal strength of the first communication signal is greater than a predetermined threshold value, and the control unit being configured to transmit an electromagnetic signal if the signal strength of the first mobile communication signal is less than the predetermined threshold value and the second mobile communication signal is received.
The present invention relates to a method of transmitting uplink control information (UCI), which is transmitted by a user equipment in a wireless communication system. In particular, the method includes the steps of receiving first offset information associated with uplink control information (UCI) transmission in uplink subframes according to uplink-downlink configuration of a serving cell and receiving a power control parameter configuring a first uplink power control subframe set and a second uplink power control subframe set for the uplink subframes. In this case, the first uplink power control subframe set and the second uplink power control subframe set are configured to be independently applied by an offset for transmitting the uplink control information.
A receiving circuit includes a receiver configured to receive a signal, a detector configured to detect arrival of a reception signal based on a signal received by the receiver, a buffer configured to store therein data corresponding to the reception signal, a demodulation processor configured to demodulate data to be supplied, and a controller configured to store the data corresponding to the reception signal in the buffer when the detector does not detect the arrival of the reception signal, and to supply the data stored in the buffer to the demodulation processor when the detector detects the arrival of the reception signal.
A computing device updates wireless connectivity information while the device is in an idle state, in expectation of user-interaction. Power is suspended to wireless network circuitry in a mobile device, for example, when the device is in an idle state. On detecting a movement of the mobile device, a location sensor is activated to read a current location of the mobile device while power to the wireless network circuitry is suspended. Based on the current location being a threshold distance from a location determined before power to the wireless network circuitry was suspended, the wireless network circuitry is activated and a current listing of wireless access points near the mobile device is determined without user interaction with the virtual features of the device.
According to the present disclosure, a communication device configured to power on a main receiver to receive data from a network includes: a low power receiver configured to receive a wake up packet, including a preamble, from the network and oversample the wake up packet; a circuit arrangement including: a correlator configured to correlate the oversampled portion of the preamble; a delay and adder configured to take an output of the correlator, delay the output of the correlator, and add the output of the correlator back onto itself to produce a delay output; a peak detector configured to detect a peak pattern in the delay output; a demodulator configured to calculate a decoding threshold value to produce a demodulated data; and a packet parser configured to check the demodulated data for a data set in order to selectively output a nonzero signal to power on the main receiver.
Systems and methods for optimizing data communication in a network of moving things. As non-limiting examples, various aspects of this disclosure provide systems and methods for communicating delay tolerant information in a network of moving things, for example comprising any of a variety of types of vehicles (e.g., autonomous vehicles, vehicles controlled by local operators, vehicles controlled by remote operators, etc.).
Disclosed are a network access method and a mobile communication terminal, comprising: upon detecting the type of a subscriber identity module being inserted for the first time into a mobile communication terminal, public land mobile networks (PLMNs) of a network format supported by the mobile communication terminal are determined on the basis of the type of the subscriber identity module; network identities of the PLMNs of the network format supported by the mobile communication terminal as determined are added to an equivalent public land mobile network (EPLMN) list; and finally, when a PLMN matching either network identity in the EPLMN list is found, a communication connection between the mobile communication terminal and the matching PLMN is established.
Methods and devices are provided for displaying a WIFI list. In the method, the device obtains WIFI types supported by a WIFI smart device. The device classifies WIFI networks to be accessed by the WIFI smart device into at least an accessible group and an inaccessible group according to the WIFI types supported by the WIFI smart device. The device then displays in the WIFI list the WIFI networks classified.
The proposed approach contemplates systems and methods configured to utilize a modified reference signal to facilitate efficient discovery of as many cells as possible within one channel state information reference signal (CSI-RS) sub-frame while maintaining certain detection and measurement performance. The proposed approach is configured to unambiguously discover at least the number of anticipated small cells within one cluster and to further identify all small cells within the coverage area of a base station/macro cell. In some embodiments, frequency multiplexing is utilized to allow different cells to transmit their discovery signals on different physical resource blocks (PRBs) rather than one cell using every PRB over the entire system bandwidth.
Apparatuses, systems, and methods for multi-SIM user equipment (UE) devices to perform system selection. A UE may determine to perform system selection for a first SIM of the UE. Information, such as serving cell and/or neighboring cell information, may be obtained from a second SIM of the UE. System selection for the first SIM may be performed based at least in part on the information obtained from the second SIM.
A method of processing a plurality of received digitized signals may include determining a plurality of cross-correlation coefficients for the plurality of received digitized signals; forming a cross-correlation coefficient vector including the plurality of cross-correlation coefficients; and determining an evaluation value for at least some of the plurality of cross-correlation coefficients. The determining the evaluation value may include: pre-selecting a predefined number of cross-correlation coefficients from the cross-correlation coefficient vector and deleting the pre-selected number of cross-correlation coefficients from the cross-correlation coefficient vector; after the pre-selection, determining an averaging value using at least one of the non-preselected cross-correlation coefficients of the cross-correlation coefficient vector; and determining the evaluation values based on the respective value of the pre-selected cross-correlation coefficient and the averaging value. The method may further include selecting one or more cross-correlation coefficients based on the determined evaluation values; and further processing based on the selected one or more cross-correlation coefficients.
Device located in a mobile telephony infrastructure, that is capable of selecting a visited network and/or a host network, and of connecting a mobile terminal to said visited network selected via said selected host network, wherein said device is located in said mobile terminal, and wherein the selection is dynamically carried out through a sequencing according to at least one criterion.
A method and system for the leveraging a reserved relationship number by an SLS platform and/or SLS phone module for the purpose of performing special operations other than making an SLS call available for termination at a subscriber TD and/or a third party TD involve associating the SLS phone number of the subscriber, the primary number of the subscriber and a next set of instructions via a common reserved relationship number.
The present invention relates to handover in a communications system, and more especially it relates cell change using Iu-interface dependent neighbor-cell lists, particularly in a Universal Mobile Telecommunications System, UMTS or WCDMA system.
A method for transmitting terminal capability information in a communication system supporting a plurality of carriers is provided. The method includes transmitting a control message including terminal capability information, wherein the terminal capability information includes at least one of an information element (IE) indicating whether to support a multi-bearer, an IE indicating whether to support a secondary cell group (SCG) bearer, or an IE indicating whether to support dual connectivity (DC).
A method including determining when a processor of an apparatus is in a sleep mode; when the processor is determined to be in the sleep mode, and during a transport protocol session of the apparatus with a device, preventing an incoming transport packet of the transport protocol session from disturbing the sleep mode of the processor; and in response to the incoming transport packet, while the processor is in the sleep mode, transmitting an indication by the apparatus to the device.
Embodiments disclosed herein provide individual idle-mode cell reselection priority lists to wireless devices dynamically, based on real-time load conditions for frequency bands deployed within a wireless network. Load equalization operations include classifying frequency bands into congested, target, or non-congested bands, grouping similar bands, comparing loads across the various bands in to a threshold, and adjusting the priority of each frequency band accordingly. The adjusted priorities are transmitted to each wireless device as the wireless device enters idle mode.
Systems and methods are provided for determining precedence between Radio Access Network (RAN) rules and Access Network Discovery and Selection Function (ANDSF) rules when a mobile communication device has access to more than one set of rules for offloading data. Systems and methods for transmitting an offloadable Access Point Name (APN) to a mobile communication device when RAN rules are used. Embodiments of the present disclosure combine the advantages of signaling methods when offloading information to a mobile communication device after a RAN rule has been satisfied such that a base station is able to broadcast a signal that enables all devices camped on an serving cell to offload to the APN.
A compression method featuring dynamic coding for wireless communication in wireless network is used to transmit a packet to clients. An access point (AP) divides a packet into several chunks all having a fixed length, sorts repetition frequencies of all the chunks, and encodes the repeated chunks with Huffman codes. Before transmitting the packet, AP divides the packet into chunks and determines whether there are chunks having been encoded, and transmits the encoded packet and the codes thereof to a specified client and other clients within coverage of transmission. After receiving the encoded packets, the client decodes the encoded packets to recover the original ones. The other clients also store the repeated chunks and the codes thereof. The information of the Huffman codes of the repeated chunks needn't be transmitted every time for different clients since other clients may overhear the Huffman codes not intended to send to them.
A system and method for performing an emergency call route failover between an Emergency Call Session Control Function (E-CSCF) and multi-homed remote end-point functions such as Border Gateway Control Function(BGCF)/Media Gateway Control Function (MGCF) or Interconnection Border Control Function (IBCF) in an Internet Protocol Multimedia Subsystem (IMS) uses Session Initiation Protocol (SIP) and/or Domain Name System (DNS) methods. The E-CSCF and/or a DNS server monitors the availability of the remote end-points to create a peer list of route options. The E-CSCF or the DNS server selects a route option from the peer list to route an emergency call to an appropriate Public Safety Answering Point (PSAP). In the event that the route option fails, the E-CSCF fails over to the next available route option to route the emergency call.
A method for performing spatial sharing between an existing SP and a candidate SP includes transmitting a first measurement request to an STA involved in the candidate SP carrying measurement configuration information for measurement over primary tier 1 channel of a tier 2 channel. The measurement configuration information includes the method that is to be used for the requested measurement, the measurement start time, the measurement duration, the number of time blocks within the measurement duration, the number of concurrent measurements to be performed using plural RX antenna configurations, and the method for reporting results of plural concurrent measurements, wherein the duration of each time block is the same.
Techniques are described for determining and/or verifying the location of a device based on environmental data. A device may provide location information describing its location, e.g., determined using a satellite-based navigation system. Environmental context data (e.g., temperature, air pressure, air quality, pollen count, ambient light, etc.) may also be received from the device, having been generated by sensor(s) incorporated into the device. The environmental context data may be compared to corresponding elements of other context data that is generated independently of the device. Based on the comparison, a confidence metric may be determined that indicates a level of confidence that the device's communicated location is its actual location. The confidence metric may be employed to make a security determination regarding a user of the device.
An electronic device comprising: a microphone; a communication circuit; a memory; and at least one processor operatively coupled to the memory, configured to: acquire voice data by using the microphone; identify a user corresponding to the voice data; select an external device based at least in part on an identity of the user; and transmit a connection request to the external device by using the communication circuit.
Network Function Virtualization Infrastructure (NFVI) servers execute Virtual Network Functions (VNFs) to exchange user data under the control of a Management and Orchestration (MANO) system. A Hardware-Trust (HT) server maintains hardware trust in some of the NFVI servers. The HT server exchanges NFVI/VNF execution data with the MANO system to associate executing VNFs with hardware-trusted NFVI servers. A control set of the VNFs receives a request for a hardware-trusted communication and responsively selects a network bearer supported by data VNFs. The HT server determines if the data VNFs are hardware-trusted VNFs, and if so, the HT server indicates to the control VNFs that the hardware-trusted communication may proceed. The control VNFs direct the data VNFs to transfer the hardware-trusted data communication over the selected network bearer.
A first electronic device is provided. The first electronic device includes, for example: a receiver configured to receive a first signal from a second device; a controller configured to generate a response signal corresponding to the first signal based on mutual information between users of the first electronic device and the second device, or the first signal; and a transmitter configured to transmit the response signal to the second device.
A method of facilitating set up of network connection of an electronic device to an external network is to be implemented by a portable communication device, and includes the steps of obtaining connection information which is associated with network connection with the electronic device, establishing wireless network connection with the electronic device according to the connection information, and transmitting an identifier and a password which are associated with a wireless AP to the electronic device so as to enable the electronic device to connect to the wireless AP using the identifier and the password so that the electronic device gains access to the external network via the wireless AP.
The invention concerns a medical assembly which insures a secured communication between a medical device (like a insulin pump) and its remote control which manages the medical device. To this effect, said assembly use an external microcontroller (MCU) which contains the secured data and uses a cryptographic mechanism to communicate with the medical device. One single external microcontroller (MCU) is paired with only one medical device in such a way the patient can change several times of remote device although aware that the remote device, in which said external protected MCU is inserted, is the single remote device paired with the medical device. In said assembly, said medical device and said external microcontroller (MCU) comprise secured memories which contain the wireless communication configuration in such a way the devices know in advance the good configuration.
A solution for simplifying data transmission between a mobile device (MD) and a destination address (DA). In some embodiments, the solution includes a connector, associated with a gateway, that has access to a first mapping between a subscriber identity (SI) associated with the MD and a DA to which the data from the MD should be sent. The gateway is configured to send a second mapping between a temporary IP address of the MD and the SI associated with the MD to the connector. When the gateway receives data from the temporary IP address of the MD, the gateway requests information of the address to which the GGSN should route that data. Since, the connector can identify from which IP address the data is received, the connector can then retrieve the address by using the first mapping and the second mapping.
A method and apparatus for changing a persona of a digital assistant is provided herein. During operation a digital assistant will determine a public-safety incident type and then change its persona based on the public-safety incident type.
Systems and methods are provided that allow a BLE scanning device or other receiving device to use packet transmission timing parameter discovery to synchronize its listening times to the actual packet transmission times from a transmitting device such as a BLE advertising device. Once discovered, the packet transmission timing parameter/s may be used by the receiving device to calculate the same pseudorandom delay time component (such as BLE advDelay) that is being used by the transmitting device to determine intervals between the transmitted packets. This allows the receiving device to calculate the exact time that the transmitting device is transmitting each packet, so that the receiving device may synchronize its listening times to coincide with the packet transmitting intervals used by the transmitting device.
A system comprising a computer-readable storage medium storing at least one program and a computer-implemented method that enables short message service (SMS) text messaging to be integrated into existing applications is presented. Consistent with some embodiments, the method may include receiving a request from a client application to transmit a message to a recipient device. The method may further include adding the message transmission request to an outbound queue based on determining the message transmission request is valid. In response to successfully validating the request, the method causes transmission of the message to the recipient device.
Methods and apparatus are disclosed for estimating, based on data collected from multiple types of data sources, the locations of cell towers. An example computer implemented method for estimating locations of cell towers includes identifying, with the processor, estimated locations for respective ones of the cell towers based on data collected from a higher-ranking data source; when estimated locations for respective ones of the cell towers have not already been identified based on data collected from the higher-ranking data source, identifying, with the processor, estimated locations for respective ones of the cell towers based on data collected from a lower-ranking data source; and communicating the identified locations for the respective ones of the cell towers.
An attempt is made by a portable device to wirelessly detect an object. While detected, respective sweeps are executed. At a sweep, each channel in a plurality of wireless channels, sequentially pulsed during the sweep by the object, are recorded using a receiver of the device, thereby obtaining a plurality of signal measurements for the sweep. Each measurement corresponds to a channel. The measurements are filtered against measurements for corresponding channels obtained from prior sweeps, thereby obtaining filtered signal measurements for the sweep. Signal measurements that satisfy an outlier criterion are eliminated from the sweep. A measure of central tendency of the remaining filtered signal measurements is converted to a distance between the object and the device for the respective sweep using a path loss function. This is repeated for each sweep thereby determining a plurality of distances. The sweeps are aborted when the device fails to detect the object.
Methods, systems, and apparatus for defining, generating, utilizing, and/or detecting a geo-fence are described. A definition of a geo-fence is obtained, the geo-fence being defined based on a first geo-fence criterion of a plurality of geo-fence criteria. A trigger is obtained, the trigger generated in response to a change in the geo-fence criterion. One or more boundaries of the geo-fence based on the changed first geo-fence criteria are redefined in response to obtaining the trigger.
An electronic device for managing one or more applications is provided. The electronic device includes a display, a location measurement module, a communication interface, a memory configured to store a first application program and a second application program, and a processor, electrically connected to the display, the location measurement module, the communication interface, and the memory, configured to execute the first application program, acquire a location information request from the first application program, and determine whether to respond to the location information request at least partially based on a state of the display or information related to the first application program when the instructions are executed.
Disclosed herein is an acoustic control apparatus including: a speaker-position computation section configured to find the position of each of a plurality of speakers located in a speaker layout space on the basis of a position computed as the microphone position in the speaker layout space based on a taken image of at least any of the microphone and an object placed at a location close to the microphone position, and a result of sound collection to collect a signal sound each generated by one of the speakers; and an acoustic control section configured to control a sound generated by each of the speakers by computing a user position in the speaker layout space based on a taken image of the user, computing the distance between the user position and the position of each of the speakers, and controlling sounds generated by the speakers according to the computed distances.
A hearing device configured to be worn at an ear of a user, where the hearing device comprising an antenna unit. The antenna unit comprises an active unit being connected to a ground unit by a feeder unit, the active unit includes an active surface, and a shield unit having a continuous surface, where a first section of the continuous surface may be arranged adjacent to the active surface. Furthermore, the active surface may be configured to transmit an electric field in a direction along or perpendicular to an ear-to-ear axis of the user when the hearing device may be worn in its operational position by the user, whereby the electric field may be coupled by a capacitive coupling towards the first section generating an electromagnetic near field, and where the shield unit may be configured to focus the electromagnetic near field inside the hearing device.
An alerting system for deaf or hard of hearing people comprises a wireless network with one or more transmitters adapted to detect events and, upon detecting an event, to transmit a wireless alerting signal to one or more receivers adapted to alert a user. The wireless network is adapted to send an alerting signal to an electronic device in order to allow the electronic device to function as a gateway between said wireless network and a hearing aid device.
According to embodiment, a transducer includes a microfabricated element integrated on a single die and an interface IC coupled to the microfabricated element. The microfabricated element includes an acoustic transducer and a temperature sensor, and the interface IC is electrically coupled to the acoustic transducer and the temperature sensor.
Seat systems and vehicle audio systems are provided. In one example, a seat system includes a seat including at least a first armrest, and a first acoustic element attached to the first armrest and configured to radiate acoustic energy to a surface in a forward facing direction of the seat.
An echo cancellation system performs audio beamforming to separate audio input into multiple directions (e.g., target signals) and generates multiple audio outputs using two acoustic echo cancellation (AEC) circuits. A first AEC removes a playback reference signal (generated from a signal sent a loudspeaker) to isolate speech included in the target signals. A second AEC removes an adaptive reference signal (generated from microphone inputs corresponding to audio received from the loudspeaker) to isolate speech included in the target signals. A beam selector receives the multiple audio outputs and selects the first AEC or the second AEC based on a linearity of the system. When linear (e.g., no distortion or variable delay between microphone input and playback signal), the beam selector selects an output from the first AEC based on signal to noise (SNR) ratios. When nonlinear, the beam selector selects an output from the second AEC.
An electronic device is provided. The electronic includes a camera module and a processor configured to capture at least one image of an object using the camera module, obtain a sound using a microphone operably connected to the processor when the at least one image is captured, determine whether the sound is related to the object, when the sound is determined to be unrelated to the object, change at least one attribute of the sound and store the changed at least one attribute of the sound.
This disclosure relates to speakers and more specifically to an array speaker for distributing music uniformly across a room. A number of audio drivers can be radially distributed within a speaker housing so that an output of the drivers is distributed evenly throughout the room. In some embodiments, the exit geometry of the audio drivers can be configured to bounce off a surface supporting the array speaker to improve the distribution of music throughout the room. The array speaker can include a number of vibration isolation elements distributed within a housing of the array speaker. The vibration isolation elements can be configured reduce the strength of forces generated by a subwoofer of the array speaker.
A case for a portable listening device has a housing and a lid. The lid is attached to the housing with a pivotable joint and operates between an open and a closed position with an over-center mechanism that employs a plurality of magnetic elements.
A storage and charging capsule for a pair of wireless earbuds is presented. The storage and charging capsule has a base part, an elongate intermediate part, the intermediate part having a longitudinal major axis, and a cover part being retractable over the intermediate part. The intermediate part has a first end attached to the base part, a second end, and an earbud chamber formed between the first and second ends. The earbud chamber is adapted to receive the pair of wireless earbuds arranged one after another along the longitudinal major axis of the intermediate part. The capsule further has a power source for charging the pair of wireless earbuds when placed in the earbud chamber in the intermediate part.
An earphone (1) includes a cylindrical barrel (2) having one end thereof inserted in an ear canal, a transmission element (4) that is provided on a part of the side of the barrel (2), has a part thereof being in contact with a tragus of a human body while the barrel (2) is inserted in the ear canal and has a built-in electroacoustic conversion element (3) configured to generate an acoustic vibration in response to an electrical signal, a vibration element (5) that is provided on an inner wall of the barrel (2) and vibrates in reaction to the acoustic vibration from the electroacoustic conversion element (3), and a biosensor (30).
An electronic device includes: a case having an aperture; a board located within the case; a microphone located at a position corresponding to the aperture of the case; a partition wall located between the board and the case to surround a periphery of the microphone; and a sound absorbing material having a density of 46 kg/m3 to 69 kg/m3, and located in a space partitioned by the board, the partition wall, and the case to cover the microphone.
A system for vibrationally sensing audio includes a vibration output device. The vibration output device includes a haptic actuator; a haptic actuator driver coupled to the haptic actuator; an antenna configured to communicatively receive a haptic pattern from a base unit; and a processor coupled to the antenna and haptic actuator driver. In some embodiments, a haptic pattern includes at least one frequency range. When a total audio power in at least one frequency range reaches a threshold, the processor activates the haptic actuator driver to drive the haptic actuator to produce vibration on a body surface of a user, an inanimate object surface, or a water surface. In some embodiments, the system further includes the base unit. The base unit includes a base unit processor configured to receive an audio signal from an audio emitting device and process the audio signal into the haptic pattern.
Disclosed herein is a receiver including: a reception section operable to receive AV content transmitted by a broadcasting wave; a trigger acquisition section operable to acquire trigger information adapted to operate an application program to be executed in response to the received AV content; a table acquisition section operable to acquire a correlation table correlating the trigger information to commands adapted to control the operation of the application program; an application acquisition section operable to acquire, based on the acquired correlation table, the application program transmitted by the broadcasting wave when the command correlated to the trigger information indicates the acquisition of the application program; and a control section operable to control the operation of the acquired application program in accordance with the command correlated to the trigger information.
Described is a technology by which personalization data is used to select and order video highlight clips for a personalized highlight reel that a user may play to view, such as part of a narrative arranged for that user. The narrative may include introductory content, transition content and/or ending content. The narrative may include advertising content and/or ending content. The narrative may be rearranged in response to an event.
A device may receive an indication of a playback of media content. The device may receive a trigger signal associated with the playback of the media content. The trigger signal may indicate a point, within the playback of the media content, to capture user reaction information associated with the media content. The device may determine, based on the trigger signal, that the user reaction information is to be captured. The device may capture the user reaction information, to form captured user reaction information, based on determining that the user reaction information is to be captured. The captured user reaction information may include an audio recording or a video recording captured by the device. The device may cause the captured user reaction information and the media content to be linked.
A method includes receiving, at a server, channel change request data from a media device. The channel change request data specifies a requested channel that is associated with a plurality of multimedia streams. Each multimedia stream of the plurality of multimedia streams has a corresponding content format. The method includes determining, at the server, an available bandwidth of a service to a premises associated with the media device. The method includes selecting, at the server, a particular content format based on the available bandwidth and a multimedia stream of the plurality of multimedia streams that has the particular content format. The method also includes sending an identification of the multimedia stream from the server to the media device.
Systems, methods, apparatus, and articles of manufacture to facilitate connection to a multimedia playback network are disclosed. An example method includes detecting a first input including an identification of a playback device; detecting a second input including an identification of an item on a controller, wherein multimedia content associated with the item is retrievable from a content provider; detecting a trigger, wherein the trigger is not the first input or the second input; and sending, in response to detecting the trigger, information regarding the multimedia content from the controller to the playback device, wherein the information includes an identification of the multimedia content for playback by the playback device, and wherein the information causes (a) the playback device to retrieve, independent of the controller, the multimedia content from the content provider and (b) playback of the retrieved multimedia content.
Provided is a reception device including a reception unit configured to receive AV content, a feature value extraction unit configured to extract a feature value from data of the received AV content, an identification result acquisition unit configured to acquire an identification result of the AV content identified using the extracted feature value, a command acquisition unit configured to acquire a command for controlling an operation of an application program that is executed in linkage with the AV content according to the acquired identification result, a control unit configured to control the operation of the application program according to the acquired command, and a detection unit configured to detect switching of the AV content being viewed. When the switching of the AV content is detected, the control unit closes the application program that has been executed in linkage with the AV content.
Systems and methods are operable to record a media content event at a media device. An exemplary embodiment grabs a series of subsequently received image frames from the media content event that is being recorded after a monitored real time reaches a closing credits monitor time, wherein the closing credits monitor time is a recording end time less a predefined duration. The embodiment then analyzes each of the image frames to identify an occurrence of text presented in the analyzed image frame, determines that the identified text corresponds to closing credits of the media content event if the at least one attribute of the identified text matches a corresponding predefined closing credits attribute, and initiates an end of the recording of the media content event in response to determining that the identified text corresponds to the closing credits of the media content event.
Preferred placement of programming content is provided by a system and method to organize or sequence the display of a set of programmable content elements of an iTV application to a viewer, using business rules that describe the preferred placement conditions or criteria. Such criteria include brand, content owner, application location, current channel, current channel family, current channel category, time of day, content category, current program, current program genre, current iTV application, current content type, and/or subscriber and set-top box profile and behavior data. In one implementation, the present invention allows for managing the ‘shelf space’ within and for iTV applications.
A method and apparatus for customizing menus on a consumer electronic device, such as a television, based on, for example, the region where the device is located when it is connected to the network. Although the available network content and services differ by region, a single device may be manufactured and sold in all of these regions and countries, which is more efficient and flexible. This enables separate models to display menus based on uniform menu definitions.
A multi-channel embedded data technique allows for embedding data, such as watermarks into multiple channels of audio, video, multi-media, and other digitized content streams. Two or more of the channels may be utilized. The embedded data may be segmented within each channel, and these segments may start and stop at identical times, or may be staggered or offset from one another. The available payload may be used for different data, or redundant data, providing enhanced reliability. Staggering allows for more rapid availability of at least some of the embedded data segments. References may be used between channels and between data streams to provide for highly complex configurations of encoding and decoding of the embedded data.
In an embodiment, a media source combines reference code values and mapping function parameters for mapping functions into video frames originally designated to carry pixel values. The video frames are delivered to a downstream device such as a media sink in an encoded video signal. The media sink extracts the mapping function parameters for the mapping functions from the encoded video signal and applies the mapping functions as a part of display management operations to map the reference code values to the mapped pixel values appropriate for the media sink. The mapped pixel values can be used to render images as represented by the reference code values.
A method and apparatus for performing streaming that is adaptive to a streaming environment, using information about a plurality of media data generated by encoding content to have different qualities.
Disclosed are efficient and user-friendly systems or methods configured to capture and share video data in real time, at a later date, or a combination thereof in an authorized manner via social media. In certain aspects, these systems and methods include capturing video, for example, from a “Jumbotron” during a sporting event or other live venue event in an authorized manner (e.g., abiding by applicable copyright laws) and sharing this captured footage with other via social media.
In some aspects, the disclosure is directed to systems and methods for transferring in-flight entertainment content. A content loading panel at a first location within an aircraft may load in-flight entertainment content from at least one of a plurality of types of portable content storage devices. A content server at a second location within the aircraft, may be in communication with the content loading panel via a physical connection. The content server may receive, via the physical connection, the in-flight entertainment content loaded via the content loading panel. The content server may store the received in-flight entertainment content. The content server may provision at least a portion of the stored in-flight entertainment content to a plurality of wireless access points located in the aircraft.
Systems and methods are described for predicting a mode value of a block of an image. Mode values are received for a predetermined number of neighboring blocks of the image. Each mode value may within a predetermined range of integer values. Using a probability table, a probability of each mode value in the range of integers being selected may be computed. The probability table may have a first axis that includes every integer value within the range of integer values, and second axis that includes combinations of the neighboring blocks, each combination of the neighboring blocks representing a binary determination whether or not each neighboring block is equal to a corresponding integer value on the first axis. Based on the computed probabilities, a mode value for the block may be selected and coded by an entropy coder.
Video compression algorithms typically represent visual information by a combination of motion and texture data. Motion data describes the temporal relationship between the content of a frame and that of a previous frame. This invention describes a method and apparatus for efficiently encoding motion data, particularly in the presence of horizontal and/or vertical motion boundaries.
A method performed by a video decoding apparatus, includes: identifying a current block to be decoded by dividing a maximum size block; decoding, from a bitstream, block mode information indicating whether a block mode of the current block to be decoded is a skip mode; when the block mode information indicates that the block mode of the current block is the skip mode, decoding, from the bitstream, a skip motion information of the current block and determining a motion vector of the current block based on the skip motion information, predicting the current block using the determined motion vector current block, and reconstructing the current block directly from the predicted block, without decoding information on residual signals of the current block from the bitstream.
An image decoding method is provided which includes a time information determination step of determining time information of a current picture, a first reference picture referred to by the current picture and a second reference picture referred to by the current picture; a scaling parameter calculation step of calculating a scaling parameter based on a time distance between the first reference picture and a second reference picture; a weighting coefficient determination step of determining two weighting coefficients based on the scaling parameter; a predictive pixel value generation step of generating a predictive pixel value of the current picture by scaling a pixel value of the first reference picture and a pixel value of the second reference picture using the two weighting coefficients determined in the weighting coefficient determination step; and a decoding step of decoding the current picture using the predictive pixel value.
A hybrid delivery method of contents for dividing contents according to the number of delivery networks and transmitting the divided contents is disclosed. The hybrid delivery method of contents comprises the steps of: enabling a server to generate composition information of divided Scalable Video Coding (SVC) video contents by dividing the SVC video contents to be delivered from the server to a client; and transmitting the divided SVC video contents to the client using a plurality of delivery networks. Therefore, the hybrid delivery method of contents can efficiently use various delivery networks.
A host decoder and accelerator communicate across an acceleration interface. The host decoder receives at least part of a bitstream for video, and it manages certain decoding operations of the accelerator across the acceleration interface. The accelerator receives data from the host decoder across the acceleration interface, then performs decoding operations. For a given frame, settings based on an uncompressed frame header can be transferred in a different buffer of the acceleration interface than a compressed frame header and compressed frame data. Among other features, the host decoder can assign settings used by the accelerator that override values of bitstream syntax elements, can assign surface index values used by the accelerator to update reference frame buffers, and can handle skipped frames without invoking the accelerator. Among other features, the accelerator can use surface index values to update reference frame buffers, and can handle changes in spatial resolution at non-key frames.
A method and apparatus for loop filter processing of boundary pixels across a block boundary aligned with a slice or tile boundary is disclosed. Embodiments according to the present invention use a parameter of a neighboring slice or tile for loop filter processing across slice or tile boundaries according to a flag indicating whether cross slice or tile loop filter processing is allowed not. According to one embodiment of the present invention, the parameter is a quantization parameter corresponding to a neighboring slice or tile, and the quantization parameter is used for filter decision in deblocking filter.
A method of individually setting the quantization parameter for each coding unit of a frame in high efficiency video coding (HEVC) is disclosed. The method for setting a quantization parameter for each coding unit in a frame for HEVC encoding includes receiving at least one of partition size information of the coding unit and prediction mode information of the coding unit, performing an adaptive bit allocation operation per each coding unit based on at least one of the unit partition size information of the coding unit and the prediction mode information of the coding unit, and setting a quantization parameter per each coding unit according to the performed adaptive bit allocation operation.
Coding efficiency may be improved by subdividing a block into smaller sub-blocks for prediction. A first rate distortion value of a block optionally partitioned into smaller prediction sub-blocks of a first size is calculated using respective inter prediction modes and transforms of the first size. The residuals are used to encode the block using a transform of a second size smaller than the first size, generating a second rate distortion value. The values are compared to determine whether coding efficiency gains may result from inter predicting the smaller, second size sub-blocks. If so, the block is encoded by generating prediction residuals for the second size sub-blocks, and neighboring sub-blocks are grouped, where possible, based on common motion information. Each resulting composite residual block is transformed by a transform of the same size to generate another rate distortion value. The encoded block with the value is selected for the bitstream.
A block of a video data stream may be subject to a motion search for comparing inter prediction of the blocks to intra prediction of the block while being partitioned. A motion search using an initial search range finds a first motion vector for the block. The blocks is partitioned into at least two sub-blocks, each having a same size, and one or more motion searches are performed for each sub-block using a second search range and the first motion vector where the second search range is a fraction of the initial search range. Respective error values associated with each of the motion searches are compared to select a partition for coding the block, and the block may be encoded using the selected partition. Performing inter prediction in this fashion can improve the performance of an encoder in terms of both execution time and compression ratio.
Accordingly, a video encoding method, apparatus and other aspects are disclosed. A reference picture set is written into a header of the bit stream, the reference picture set including reference pictures, a time identifier, a usage identifier and at least one parameter representing at least one of scale and view. A reference picture list having one or more of the reference pictures is constructed. A block of the video is encoded from a reference picture associated with a reference index in the reference picture list. The reference index is written into the bit stream.
An apparatus for displaying three dimensional (3D) images to a viewer without the need for 3D glasses. The apparatus includes a first display device horizontally oriented and operable to alternately display a first parallax and a second parallax barrier. The first parallax barrier corresponds with a first viewer location and the second parallax barrier corresponds with a second viewer location. The apparatus includes a second display device positioned parallel to the first display device and operable to alternately display first 3D content corresponding with the first viewer location and second 3D content corresponding with the second viewer location. The apparatus includes a directional backlight assembly alternately backlighting the second display device with first light directed toward the first viewer location and second light directed toward the second viewer location. The apparatus includes a controller synchronizing time multiplexed operations of the first and second display devices and the directional backlight assembly.
Enhanced transparent display screen for electronic mobile device and method of operation. The display may include a dual display screen varying in translucency. The dual display screen may be a transparent organic light emitting display, and the non-transparent display may be a liquid crystal display. For gaming and photo applications, the invention responds to different level of pressure on touchscreen to access different layers of objects in parallax image or bottom layer of transparent display screen. Advertisements delivered on the electronic mobile devices by virtue of a mobile app are displayed on the electronic device screen outside the confines or borders of the mobile app. Advertisements are viewed on a rear display screen to non-users of the electronic mobile device. The dual screen may be touch screen with proximity detection and allow for multi-player gaming.
Provided is a three-dimensional image processing system that includes a sensor portion that is attached to a measurement target and detects a three-dimensional motion thereof as measurement data; a moving image data generation portion that generates moving image data in which the sensor potion is imaged together with the measurement target; and a control portion that causes the moving image data and the measurement data to be synchronized with each other on a time axis by comparing a change pattern relating to the motion of the sensor portion and being based on the moving image data with a change pattern relating to the motion of the sensor portion and being based on the measurement data.
A method is provided of determining three-dimensional coordinates of an object surface with a laser tracker and structured light scanner. The method includes providing the scanner having a body, a pair of cameras, a projector, a retroreflector and a processor. The projector and cameras are positioned in a non-collinear arrangement. The projector is configured to project a pattern onto the surface. The method also includes providing the tracker which emits a beam of light onto the retroreflector and receives a reflected beam of light. The first location and orientation is measured with the tracker. The first surface pattern is projected onto the surface. A pair of images of the surface pattern is acquired with cameras. The processor determines the 3D coordinates of a first plurality of points in the tracker frame of reference.
A 3D imaging apparatus with enhanced depth of field to obtain electronic images of an object for use in generating a 3D digital model of the object. The apparatus includes a housing having mirrors positioned to receive an image from an object external to the housing and provide the image to an image sensor. The optical path between the object and the image sensor includes an aperture element having apertures for providing the image along multiple optical channels with a lens positioned within each of the optical channels. The depth of field of the apparatus includes the housing, allowing placement of the housing directly on the object when obtaining images of it.
There is provided a video format determination device including a video input unit that receives video having a feature amount for each pixel, a region representative value calculation unit that divides a left-eye video region and a right-eye video region in a three-dimensional video format to be determined in input video into small regions, and then computes representative values of feature amounts of the respective small regions for each of the left-eye video region and the right-eye video region, a correction value calculation unit that calculates a correction value to correct the representative values, a data correction unit that corrects the representative values, an inter-region correlation calculation unit that calculates the correlation between the left- and right-eye video regions, and an evaluation determination unit that evaluates the correlation to determine whether input video is in the three-dimensional video format.
Various features relating to reducing and/or eliminating noise from images are described. In some embodiments depth based denoising is used on images captured by one or more camera modules based on depth information of a scene area and optical characteristics of the one or more camera modules used to captures the images. In some embodiments by taking into consideration the camera module optics and the depth of the object included in the image portion, a maximum expected frequency can be determined and the image portion is then filtered to reduce or remove frequencies above the maximum expected frequency. In this way noise can be reduced or eliminated from image portions captured by one or more camera modules. The optical characteristic of different camera modules may be different. In some embodiments a maximum expected frequency is determined on a per camera module and depth basis.
In a converting method relating to picture luminance according to one aspect of the present disclosure, the picture luminance is formed by luminance values in a first luminance range. In this method, a first luminance signal that indicates code values obtained by quantizing the luminance value of the picture is obtained, code values, which are associated with the code values indicated by the obtained first luminance signal by quantization for a second luminance range different in a maximum value from the first luminance range are determined as converted code values, and the first luminance signal is converted into a second luminance signal indicating the converted code values. As a result, the converting method is further improved.
The disclosure relates to the field of displaying a projected picture, and particularly to a projection device, and a method for adjusting a projected picture. In an embodiment of the disclosure, the method includes: acquiring an image of a physical screen through a camera, and determining a projection of the physical screen onto a vision plane of the camera; determining rotation parameters and translation parameters of the projection device according to the vision plane and the projection of the physical screen; and adjusting the projection device according to the rotation parameters and the translation parameters of the projection device.
Locating systems and methods for components are provided. A component has an exterior surface. A method includes locating a surface feature configured on the exterior surface along an X-axis and a Y-axis by analyzing an image of the component to obtain X-axis data points and Y-axis data points for the surface feature. The method further includes directly measuring the surface feature along a Z-axis to obtain Z-axis data points for the surface feature, wherein the X-axis, the Y-axis and the Z-axis are mutually orthogonal. The method further includes calculating at least two of a pitch value, a roll value or a yaw value for the surface feature.
The present disclosure provides methods and systems for enhanced conference management. According to some embodiments, a conference management server for enhanced conference management is provided. The conference management server comprises a memory storing a set of instructions, and at least one processor configured to execute the instructions to: receive, from a user device, conference information including a conference subject and an identification of at least one participant; determine, based on the received conference information, a degree of formality for a conference; and send a conference notification to one or more devices or participants identified based on the conference information, the conference notification including information reflecting the degree of formality for the conference.
The timing of an un-interruptible process in a set top box or other device can be automatically adjusted in response to user inputs to improve the user experience. A user instruction is received at an input of the user device that causes an uninterruptible process to begin or commence in the user device after a time delay measured from receipt of the initial instruction. One or more input of the device is monitored to determine whether a subsequent instruction is received within a time period. Based on this determination, the time delay applied to future un-interruptible processes is adjusted. By adjusting the time delay in response to user inputs, the time delay can be automatically matched to a user's preferences.
An image sensor comprises a first semiconductor substrate on which a plurality of photoelectric conversion elements are arranged, a second semiconductor substrate on which a plurality of storage devices each for storing pixel signals are arranged; and a plurality of connection units configured to electrically connect the photodiodes and the storage devices, wherein the plurality of storage devices are arranged in correspondence with the plurality of photoelectric conversion elements.
A first voltage line supplies a constant first voltage in column circuits of an imaging device. A second voltage line supplies a second voltage that is lower than the first voltage and is constant. A third voltage line supplies a constant third voltage. A fourth voltage line supplies a fourth voltage that is lower than the third voltage and is constant. The first voltage line is electrically connected to a drain of an NMOS transistor, and the third voltage line is electrically connected to a gate of the NMOS transistor. The second voltage line is electrically connected to a drain of a PMOS transistor, and the fourth voltage line is electrically connected to a gate of the PMOS transistor.
The invention relates to time delay integration (TDI) image sensors. The sensor includes means for detecting a shift of the sensor with respect to the image. The pixel matrix is divided in the column direction into at least a first and a second sub-matrix (Ma, Mb). On each side of each sub-matrix are arranged groups of additional columns (GRa1, GRb1, GRa2, GRb2). The shifts (Db2−Da2, Db3−Da3, etc.) in relative position of these groups between the first and the second sub-matrices are different from each other and make it possible to detect a relative shift of the sensor during travel. More precisely, the signals originating from groups of columns of same rank associated with the two sub-matrices are compared. The pair of groups that delivers the pair of signals that are closest to each other defines the probable shift of the sensor with respect to the image: this shift is equal to the relative position difference of these two groups.
An image capturing apparatus includes an interval shooting section (51) that performs an interval shooting process, a lighten compositing section (54) that performs a lighten compositing process using images captured one by one by the interval shooting process, and a composite-image-in-progress displaying section (55) that, when a first operation is performed, causes a composite image in a first memory area, which is used as a compositing buffer for the lighten compositing process, to be displayed on an LCD monitor without causing the interval shooting process to be stopped.
One or more systems and/or methods for capturing an image are provided. In an example, an application interface (e.g., a weather application interface), within which the image is to be populated, may be identified. The application interface may be evaluated to identify display context (e.g., a temperature label, weather visual effect, a weather icon, etc.) of the application interface. A camera user interface, associated with a camera of a device, may be displayed to a user. The display context may be overlaid a real-time image capture preview provided by the camera user interface so that the user may preview how the image may appear when used as a background image for the application interface (e.g., how a scene of a park may appear when the temperature label, weather icon, etc. are displayed over the background image). The image may be captured through the camera user interface utilizing the camera.
The present disclosure discloses an image frame processing method for processing a plurality of input image frames with an image processing device. An embodiment of the method comprises: receiving a plurality of input image frames; and processing the plurality of input image frames to produce a first number of first output image frames and a second number of second output image frames, in which the resolution of the first output image frames is higher than the resolution of the second output image frames and the first number is less than the second number, wherein a first frame of the first output image frames and a second frame of the second output image frames are derived from the same one of the plurality of input image frames.
A photographing apparatus, comprising: an imaging optical system; an image sensor which receives a light flux passing through the imaging optical system, captures an image, and outputs an imaging signal; an aperture which is included in the imaging optical system and which includes an opening to restrict the light flux; a controller which performs a first exposure control to control the exposure of the image sensor by changing the opening of the aperture and calculates, based on an imaging signal output by the image sensor, a deviation between an optimal exposure amount and a currently set actual exposure amount; and an imaging control circuit which performs a second exposure control to control the exposure of the image sensor without changing the opening of the aperture, wherein the controller selects either the first exposure control or the second exposure control based on the deviation to control exposure.
A photographing method for use in a device includes: monitoring a current time and determining whether the current time reaches a preset shooting time; taking a first picture of an object when it is determined that the current time reaches the preset shooting time; determining a difference between a first image in a preset area of the first picture and a second image in the preset area of a second picture taken at a previous preset shooting time, the preset area corresponding to the object; and saving the first picture if the determined difference is equal to or greater than a preset threshold value.
The image-capturing apparatus includes a camera communicator to providing, with the accessory apparatus, three channels that are a notification channel, a first data communication channel used for transmitting accessory data from the accessory apparatus to the image-capturing apparatus, and a second data communication channel used for transmitting camera data from the image-capturing apparatus to the accessory apparatus. A camera controller is configured to, in response to detecting a start bit included in each of frames of the accessory data and indicating a start of each frame, transmit one frame of the camera data to the accessory apparatus through the second data communication channel and perform detection of the start bit regardless of whether or not during transmitting the camera data to the accessory apparatus.
A phase filter 101 is configured to comprise an annular structure rotationally symmetrical about an optical axis, each annular zone including a cross-sectional shape of substantially parabola for uniformly extending incident rays of light on a focal plane and letting the rays overlap with each other.
An imaging means acquires an imaged image in a predetermined imaging range for each predetermined frame rate. An image processing means performs image processing on image data of the image captured by the imaging means. A first setting means (S420) sets the imaging means to image a predetermined first range in the imaging range with a predetermined first frame rate. A second setting means (S430) sets the imaging means to image a second range, which is a part of the imaging range imaged by the imaging means and is narrower than the first range, with a second frame rate higher than the first frame rate. A determination means (S420) selects one of the first setting means and the second setting means depending on process contents that the image processing performs.
An image processing apparatus includes a skin area extraction unit that extracts a skin area from image data, a chromaticity computation unit that computes hue information and saturation information of the skin area, a hue conversion unit that converts the hue information so that the hue information is in agreement with target information, a reception unit that receives a change instruction to change the saturation information, a parameter determination unit that determines a conversion parameter based on the change instruction, and a saturation conversion unit that converts the saturation information based on the conversion parameter.
An authentication system comprises a mobile terminal configured to output an ultrasonic wave including authentication information; and a first device configured to receive the ultrasonic wave output by the mobile terminal, carry out authentication on the basis of the obtained authentication information extracted from the ultrasonic wave and allow execution of a job at the time the authentication is established.
An image processing apparatus including: a halftone processing unit configured to generate halftone image data represented by a halftone dot corresponding to a density value by performing halftone processing using a dither matrix for input image data; a phase change processing unit configured to correct a deviation of a laser beam scan line that is used in forming an image in accordance with the input image data on a printing medium by performing phase change processing to shift the phase of a pixel in the halftone image data in a sub scanning direction; and a pseudo high-resolution processing unit configured to convert the halftone image data after the phase change processing into halftone image data with a lower resolution by performing pseudo high-resolution processing, and in the dither matrix, threshold values are arranged so that the number of pixels in the sub scanning direction, which make up the halftone dot, is always even.
A technique processes captured data on a device, wherein selected captured data of a given quality resolution is transferred via a communication link to a separate storage location for future availability. A storage protocol may include different storage organization categories. A possible aspect includes an identifier record to enable future accessibility to selected captured data by one or more authorized parties or approved devices or authorized recipients.
An image scanning system of the present invention uses an image capturing unit moving unidirectionally along an optical axis direction, such that an object is positioned within a range of the depth of field of the image capturing unit. The optical axis direction is perpendicular to a plane, and a platform bearing the object and the plane form an included angle, such that multiple inclined surfaces of the object face the same end of a scanning direction, or such that one of the multiple inclined surfaces is parallel to the plane and other inclined surfaces face the same end of the scanning direction, wherein the scanning direction is parallel to the plane. Therefore, in the process of one-time scan, the scanning height of the image capturing unit only rises unidirectionally or descends unidirectionally and has no turning point, and thus, no backlash problem will happen.
The present disclosure provides devices and techniques for processing a media capture stream captured by a camera device using a chain device media foundation transform (DMFT). The techniques include configuring multiple DMFTs such that an original manufacturer (OEM) may have flexibility in independently selecting various functionalities from different sources (e.g., OS, OEM, IHV, ISV, or VARs) in order to maximize hardware capabilities while minimizing the drawbacks of creating a single DMFT. To that end, the implementation of the present disclosure includes a devices and techniques of chainable DMFTs such that a device transform manager may select a set of functionalities (e.g., face recognition, color effects, etc.) from multiple vendors to customize the camera's capabilities according to the OEM specification.
A management system includes: a management server; one or more image forming apparatuses that notify the management server of information on a remaining amount of toner; and one or more terminals, in which the management server makes a toner remaining amount history by combining the information on the remaining amount of toner with time and date information, detects, based on the toner remaining amount history, that toner replacement has been performed when an increase rate of the remaining amount of toner exceeds a threshold value, and determines, based on the contract value, whether the remaining amount of toner before the toner replacement is not more than the contract value when the toner replacement is detected, and notifies the one or more terminals of that the performed toner replacement corresponds to a contract violation when the remaining amount of toner before the toner replacement is more than the contract value.
An image forming apparatus is provided. The image forming apparatus includes: a storage configured to store a color conversion table; an image former configured to print a compensation chart corresponding to the color conversion table; a scanner configured to scan the printed compensation chart; and a changer configured to understand a range of brightness that the image former is able to represent using the scanned compensation chart, generate a gamma curve corresponding to the understood range of brightness, and change the color conversion table based on the generated gamma curve.
An image forming apparatus includes a print device, a communication device, a print executing circuit, a job managing circuit, and an another-apparatus transmitting circuit. The print device executes print on a recording medium. The communication device performs communications. The print executing circuit causes the print device to perform a print job addressing a first port number received by the communication device. The job managing circuit manages a print job addressing a second port number received by the communication device. The second port number is different from the first port number. The another-apparatus transmitting circuit transmits the print job managed by the job managing circuit to another image forming apparatus upon request from the other image forming apparatus via the communication device.
For processing call center data, an access module receives call system data for a plurality of users. The access module further receives customer relationship management (CRM) data and receives user data for the plurality of users. A display module displays the call system data, the CRM data, and the user data in a temporal relationship for a first user as dashboard data.
A system for soliciting and activating one or more groups of workers to service contact center business includes an interface accessible to the one or more groups for accepting group registration data, publishing contact center business and for enabling the groups to subscribe to receive business; a data repository for storing the registration data for subscribing groups; and a routing server for specifying routing strategies for event routing to the groups. The system is characterized in that the one or more groups of workers may be activated during contact center business activity to perform services based on need.
Examples are disclosed for placing an outbound telephony call using a mobile telephony device as a proxy to make the call on behalf of a smart speaker device. At a communications server, it is determined whether a mobile telephony device is in proximity of a smart speaker device. When the mobile telephony device is in proximity of a smart speaker device and attempts to place a telephony call, the communications server establishes a communications link between the communications server and the smart speaker device. The communications server may then dial the telephone number sent by the mobile telephony device and establish a communications link between the communications server and a device associated with the dialed telephone number. The communications server may then join the communications link between the communications server and the smart speaker device with the communications link between the communications server and a device associated with the dialed telephone number to create a communications session.
There is disclosed a mobile terminal including a first body having a front surface in which a display unit is disposed and one open side, a battery receiving unit formed in the first body, a second body coupled to one side of the first body, a battery coupled to the second body and inserted in the battery receiving unit, a fixing hook provided in one of the first body and the second body, a moving hook provided in the other one of the first body and the second body, corresponding to the fixing hook, and a releasing button configured to release the moving hook from the fixing hook by applying a predetermined force to the moving hook, wherein the fixing hook comprises an inclined surface in one direction and a step formed in other direction, and the moving hook comprises a step formed in one direction and an inclined surface formed in the other direction such that the mobile terminal in accordance with the present disclosure may use the case having the continuous surface from the lateral surface to the rear surface, with no battery cover. Accordingly, the exterior design of the mobile terminal may be improved.
A computer-implemented method of predictively providing a part of a software application over a network to one recipient computer of plural recipient computers, each of the recipient computers being configured for executing the software application without having in its possession the entire software application, the method comprising acquiring a prediction of an access time of the part and a prediction of a provisioning time of the part over the network and providing the part ahead of the access time minus the provisioning time to the one recipient computer.
A method is disclosed in which exhibitors or information management softwares at an event provide digital content to a content administrator, who in turn processes the digital content and loads it onto a content delivery device. At the event attendees are issued portable memory devices that, when engaged with a content delivery device, upload the digital content from that content delivery device. Each portable memory device has an information management software that enables the attendee to search, correlate and manage the digital content. In some embodiments digital content is loaded to the portable memory device without use of the content delivery device.
Provided are techniques for activity analysis for monitoring and updating a personal profile. User activities are monitored to create a user activity log. The user activity log and a user profile are analyzed using one or more profile entity to activity mappings to identify one or more suggestions for updating the user profile. The one or more suggestions are provided to update the user profile. In response to acceptance of at least one of the suggestions, the user profile is updated.
A Network Reporting Entity (NRE) and a User Equipment (UE) as well as a respective method therein for use in a wireless communication network for enabling controlling data transfer between the UE and a network cache are provided. The NRE receives, from the UE, a request to start reporting network status and transmits, to the UE, information regarding the status of the network, the information pertaining to whether network condition is in a state where a data transfer is preferred or not, wherein the NRE obtains the information regarding the status of the network from the Network Conditions Information Entity (NCIE). In this manner, the UE is enabled to control the data transfer between the UE and the network cache.
A system is provided for facilitating the exchange of information between interconnected processors in environments such as distributed computing environments and message-oriented middleware environments. A source sends input to the target. A manager in communication with both the source and the target receives the input from the source, initiates a storage of the input and forwards the input to the target. If the manager receives output from the target before completion of the input storage, the manager cancels the input storage because it is no longer needed to ensure system reliability. Upon receiving output from the target, the manager initiates a storage of the output and forwards the output to the source. If the manager receives acknowledgement from the source that the target output has been received before completion of the output storage, the manager cancels the output storage because it is no longer needed to ensure system reliability.
A computer implemented method, computer program product, and system for performing create, read, update, or delete operations on a plurality of resources in a client-server environment. In an embodiment, the computer implemented method includes the steps of identifying individual resources requiring operations to be performed, assigning local references for any resources to which a URI (Uniform Resource Identifier) has not been provided by the server, generating metadata describing the local references and operations to be performed, wrapping each individual resource with the metadata to provide a plurality of wrapped resources arranging the wrapped resources into a single payload, and transmitting the single payload to the server.
A handheld wireless device makes a request for service from a server of a business on a global network, the request originating from the wireless device is automatically routed to the closest server of the business that is geographically closest to the location of the wireless device as determined by a GPS function in the device, or by a router server in the wireless network based on the group of cell towers being connected to by the wireless device, or based on the location of the wireless device in a global telephone network database, for faster access to the service and a response there from.
An automatic service monitor in an information technology environment may be equipped to automatically process machine data originating from a running IT environment to identify the entities that perform services in the environment, and to reflect the discovered entities and service associations in the control and configuration data that directs the monitoring operations performed by the system.
Techniques and mechanisms described herein facilitate conducting a teleconference between a remote client device and a teleconference system. According to various embodiments, the teleconference system may include a data input device that receives teleconference data and a teleconference output device that presents teleconference output data. The data input device and the data output device may reside at different network end points. The system identifies the presence of a user on two different devices and leverages the appropriate device for video capture and display.
Improved techniques for managing backups of data objects involve specifying a policy for generating complete versions of a data object at a destination data storage system (destination) from differential backups of the data object previously received. The complete versions are independent of the previous differential backups and any complete versions of the data object that preceded them. A backup policy specifies when such a complete version is to be generated. Along these lines, a destination receives differential backups of a data object stored on a source. The destination may store these differential backups at the destination. However, according to the backup policy that specifies that a complete version of a data object is generated after the destination receives a certain number of differential backups, the destination creates a complete copy of the data of the data object at new storage locations at the destination distinct from previous storage locations.
Aspects of the present invention provide systems and methods that facilitate communicating a message, independent of a centralized resource, to be retrieved at a future time. In embodiments, a computing device receives a configuration-related message via a block chain maintained by a plurality of decentralized nodes. In embodiments, upon verification of the authenticity of the message, the device will execute the deferred instructions indicated in the message. In embodiments, the instructions may be add functionality or not allow functionality in the device. In embodiments, the instructions may indicate that a smart package should allow the end user to access contents of the package or to not allow access to the contents.
In order to reduce wasteful delays occurring when a mobile terminal whose RRC state is a state wherein communication is possible transfers in a temporarily stopped state, a distribution sequence determination device, which determines the distribution sequence for push messages transmitted to each of multiple terminals, determines the distribution sequence on the basis of whether each of the multiple terminals is in a state wherein communication is possible or is in a temporarily stopped state, so as to transmit the push messages to each of the multiple terminals in a distribution sequence in which terminals in a state wherein communication is possible are given priority over terminals in the temporarily stopped state.
Methods, systems, and media for controlling information utilized to present content using a public display device are provided. In some implementations a method for presenting content on a public display device is provided, the method comprising: (a) initiating communication with one or more display devices; (b) selecting a display device; (c) establishing a communication channel with the selected display device; (d) receiving information related to an area of a screen allocated for use by the user device; (e) identifying content that is to be presented using the selected display device; (f) generating formatted content based on the area of the screen allocated for use by the user device; (g) transmitting the formatted content to the display device using the communication channel; and repeating at least (e) to (g) until (h) determining that presentation of content using the selected display device is to be inhibited.
A method for sending and receiving alerts in an instant messaging environment are disclosed. The method includes receiving a request for alerts from a service provider, the request including an alert template and a rule to retrieve the alert template. The method also includes receiving a trigger from the service provider, the trigger including an identification of an alert receiver, the rule to retrieve the alert template, and changeable contents for the alert template. The method further includes obtaining the alert template from the request for alerts based on the rule to retrieve the alert template in the trigger; composing an alert using the alert template and the changeable contents; and sending the alert to the alert receiver identified in the trigger. The method and system consistent with the present disclosure may enrich the user experience in instant messaging applications.
In a remote support system, an image forming apparatus, a staff terminal, and a management apparatus are connected to one another for communication. The management apparatus accumulates a conversation pattern communicated in a conversation form between the image forming apparatus and the staff terminal, and when the management apparatus receives a guidance request from the image forming apparatus, the management apparatus forces the staff terminal to display a selection screen that displays, as choices, the conversation patterns, and forces a request sending apparatus to display a selected conversation pattern as a guidance.
The object storage system divides files into a number of object segments, each segment corresponding to a portion of the object, and stores each segment individually in the cloud storage system. The system also generates and stores a manifest file describing the relationship of the various segments to the original data file. Requests to retrieve the segmented file are fulfilled by consulting the manifest file and using the information from the manifest to reconstitute the original data file from the constituent segments. Modifying, appending to, or truncating the object is accomplished by manipulating individual segments and the manifest file. Manipulation of the individual object segments and/or the manifest is also used to implement copy-on-write, snapshotting, software transactional memory, and peer-to-peer transmission of the large file.
Technology is described for supplying regulatory compliance evidence for a virtual computing service provider. A request is received for providing regulatory compliance evidence for a service provided by a virtual computing service provider. A statistical analysis of subject matter relating to the request using machine learning is provided. The subject matter associated with the request is categorized. The categorized subject matter is mapped to a control list, maintained for compliance regulations, that is mapped to the regulatory compliance evidence. A confidence level for the regulatory compliance evidence is developed according to historical data relating to previously provided regulatory compliance evidence. A response, having both the regulatory compliance evidence associated with the request and the regulatory confidence level, is provided with a set of digital signatures. An authenticated user feedback response is provided indicating an accuracy level that the response matches the request for developing the confidence level.
Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted untrusted processes or corporate private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth. In this manner, threat detection based on complex interactions of computing objects can be characterized in a platform independent manner and pre-processed on endpoints without requiring significant communications overhead with a remote threat management facility.
Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth. In this manner, threat detection based on complex interactions of computing objects can be characterized in a platform independent manner and pre-processed on endpoints without requiring significant communications overhead with a remote threat management facility.
The disclosed computer-implemented method for identifying compromised devices within industrial control systems may include (1) monitoring network traffic within a network that facilitates communication for an industrial control system that includes an industrial device, (2) creating, based at least in part on the network traffic, a message protocol profile for the industrial device that describes (A) a network protocol used to communicate with the industrial device and (B) normal communication patterns of the industrial device, (3) detecting at least one message that involves the industrial device and at least one other computing device included in the industrial control system, (4) determining, by comparing the message with the message protocol profile, that the message represents an anomaly, and then (5) determining, based at least in part on the message representing the anomaly, that the other computing device has likely been compromised. Various other methods, systems, and computer-readable media are also disclosed.
Aspects of an abuse detection system for a web service include an abuse detection engine executing on a server. The abuse detection engine includes a pre-processing module for aggregating a data set for processing and analysis; a suspiciousness test module for identifying suspicious content owners and suspicious users; a graphing module for finding connections between suspicious content owners and suspicious users; an analysis module for determining which groups are constituted of fraudulent or abusive accounts; and a notification generation and output module for generating a list of abusive entities and a notification for output to at least one of: the abusive entity, a digital content distribution company associated with the abusive entity, and a legal department or other entity for further investigation or action. Additionally, royalties for content consumptions associated with abusive accounts may be held. Aspects of an abusive traffic detection method enable multi-account and multi-content owner fraud detection.
A digital content system enables users of the content system to access, view and interact with digital content items in a safe, efficient and enjoyable online environment. The content system pre-filters an image content item and determines whether the content item is suspicious of having unsafe content, e.g., nudity and pornography. For example, the content system pre-filters an image content item based on the source of the image content item. A content item from a source known for providing safe content is determined to be safe. The content system determines an image content item to be safe if the content item matches a content item known to be safe or if the content item contains less than a threshold amount of human skin. The content system may further verify the content of the image content item with a verification service and takes remedial actions based on the verification result.
Techniques of detecting malicious events involve generating a relational graph of event data describing events that occur within a specified, limited time window. Along these lines, a malicious event detection computer receives event data describing interactions between entities such as users, devices, and network domains from various servers that occur within a specified time window. In response, the malicious event detection computer generates a relational graph that has graph structures (e.g., nodes and edges) representing these interactions. Analysis of patterns within the resulting relational graph indicates whether there is a malicious event occurring.
Dynamically selecting a DHCP server for a DHCP client terminal device may include triggering, by a network device, an authentication performed by an authentication server on a DHCP client terminal device user when receiving a DHCP packet for requesting a configuration parameter sent from a DHCP client terminal device, receiving, by the network device, an identity of a DHCP server designated by the authentication server for the DHCP client terminal device user when the DHCP client terminal device user passes the authentication, and establishing an entry for user information of the DHCP client terminal device user and the identity of the designated DHCP server, and matching, by the network device, the user information carried in a packet with established entries when receiving the packet subsequently sent from the DHCP client terminal device, and forwarding the packet using the identity of the DHCP server in the entry matching the user information.
A communication and security device for a portable computer is disclosed including a housing, a connector provided on the housing for physical connection to the portable computer, a computer interface coupled to the connector for communicating data with the portable computer, a wireless modem coupled to the computer interface for communicating data between the portable computer and a remote device via a wireless network, a controller configured to control access to the data storage based on an identifier in a security message received via the wireless network.
A secure domain name service for a computer network is disclosed that includes a portal connected to a computer network, such as the Internet, and a domain name database connected to the computer network through the portal. The portal authenticates a query for a secure computer network address, and the domain name database stores secure computer network addresses for the computer network. Each secure computer network address is based on a non-standard top-level domain name, such as .scom, .sorg, .snet, .snet, .sedu, .smil and .sint.
In some embodiments, the present invention provides for an exemplary computer system which includes at least the following components: a network of externally owned presence (EOP) member nodes, including a supervisory EOP member node is configured to generate at least one personalized cryptographic private key for each peer EOP member node; a distributed database, storing a plurality of persistent data objects; and a plurality of self-contained self-executing software containers (SESCs); where each SESC includes an independently executable software code which is at least configured to: generate a state hash representative of a current state of a persistent data object, perform a data action with the persistent data object; and determine that a particular EOP member node has a permission to cause the SESC to perform the data action with the persistent data object based.
A system for maintaining and hosting an AMI command and control application is disclosed. The system includes an AMI command and control application module in a network compartment for measuring energy usage from customer meters, managing an AMI network, and executing connect/disconnect orders; and a plurality of firewalls to provide a security perimeter to the AMI command and control application module when the module is accessed by a vendor network or a utility network. The AMI command and control application module includes a VPN concentrator and a 6in4 router to provide a security perimeter between the AMI command and control application module and the AMI network.
Systems, methods, apparatuses, and software for a content delivery network that caches content for delivery to end user devices is presented. In one example, a method includes establishing domain name relationships for use by a top-level DNS to recurse DNS queries to a DNS node associated with the CDN. The method also includes establishing address correlations between prefixed IPv6 network addresses and PQDNs that comprise indicators for at least a routing provider identifier and a cache node grouping. The method also includes receiving recursed DNS queries and responsively translating domain names in the recursed DNS queries into associated IPv6 network addresses to reach content indicated by the domain names, the associated IPv6 network addresses each determined by at least selecting one of the prefixed IPv6 network addresses according to a desired routing provider and a desired cache node grouping indicated in the PQDNs.
Disclosed herein is a framework for pushing service notifications to users via selected channels that are chosen based on user history. In accordance with one aspect, the framework determines if a notification is to be sent to a particular user. The framework may further determine if the notification requires an action. If the notification requires no action, the framework may choose, from multiple channels, a channel with lowest receive time duration. The framework may then send the notification via the chosen channel.
The present invention provides a method and a device for displaying instant messaging messages. The method includes detecting that an instant messaging message to be displayed includes a hyperlink; when it is detected that the instant messaging message comprises the hyperlink, pulling out abstract information corresponding to the hyperlink; filling the pulled-out abstract information in an inserted control; and displaying the instant messaging message as well as the control. The device includes a detection module, a pulling module and a display module. The invention is able to display to users the content of the hyperlink contained in the instant messaging message, therefore improving the usability and interactivity of the Instant Messenger and raising the users' experiences.
Systems, methods, and apparatus are herein disclosed for enabling direct communication between two IRC clients without the use of an IRC server once the connection is established. In one instance this can involve a gateway electing to not mangle or not perform NAT on a private IP address of a sending client as a DCC request is passed to the IRC server. In another instance this can involve a gateway mangling or performing NAT on a sender public IP address of a DCC request after it has been passed to the IRC server and returned to the gateway. The clients can be SoftAP clients. The gateway can determine when to mangle and when not to mangle IP addresses using a database that include identifiers of IRC clients on a subnet along with respective IRC servers for those IRC clients.
Examples are generally directed towards automatic assessment of machine generated conversational responses. Context-message-response n-tuples are extracted from at least one source of conversational data to generate a set of multi-reference responses. A response in the set of multi-reference responses includes it context-message data pair and rating. The rating indicates a quality of the response relative to the context-message data pair. A response assessment engine generates a metric score for a machine-generated response based on an assessment metric and the set of multi-reference responses. The metric score indicates a quality of the machine-generated conversational response relative to a user-generated message and a context of the user-generated message. A response generation system of a computing device, such as a digital assistant, is optimized and adjusted based on the metric score to improve the accuracy, quality, and relevance of responses output to the user.
Systems and methods for scheduling data egress from a network switch. Systems may include switch circuitry, a plurality of ports, and a plurality of queues. Each port may be associated with a respective set of routing information for network packets and each port may be configured with a respective set of egress periods. Each network packet may have respective routing information and a type that specifies a respective egress period. Each queue may be associated with a respective network packet type and a port of the plurality of ports.
An optoelectronic switch comprising: a first plurality of detector remodulators (DRMs) (C3, D1), each DRM having an integer number M of optical inputs and an integer number N of optical outputs; a second plurality of DRMs (C7, D5), each DRM having N optical inputs and M optical outputs; a passive optical switch fabric (C4+C5+C6, D2+D3+D4) connecting the N optical outputs of each of the first plurality of DRMs with the N optical inputs of each of the second plurality of DRMs, the path of an optical signal through the optical switch fabric depending upon its wavelength; wherein each DRM (C3, D1) of the first plurality of DRMs is configured to act as a tunable wavelength converter to select the desired path of an optical signal through the optical switch fabric (C4+C5+C6, D2+D3+D4); and wherein each of the first plurality of DRMs (C3, D1) includes a concentrator, the concentrator configured to aggregate optical signals received from any of the M inputs of that DRM and to buffer them according to the one of the plurality of second DRMs (C7, D5) that includes their destination port.
Embodiments of the present invention provide a resource downloading method and apparatus. The method includes: intercepting an access request for current resources; finding, through a resource relationship index file, resources which have dependency relationships with the current resources and do not exist locally on the client as predicted resources, wherein the resource relationship index file is generated in advance according to dependency relationships between individual resources in the full client of a network application; and allocating a first thread from unoccupied threads available for downloading the predicted resources, and downloading the predicted resources locally to the client using the first thread. In addition, embodiments of the present invention provide a resource downloading apparatus.
In a networked storage system, a request for placing a workload for is received by a management console that determines a plurality of subset of resources for responding to the workload. Each subset of resources includes at least two different but related resource types that can be used for processing the workload. A penalty index for each subset of resources is then determined. The penalty index of each resource is based on a supply parameter that indicates a maximum capability of the resource, a threshold value that indicates a capability level beyond which no load is added to the resource and a criticality factor that indicates an importance of each resource to the networked storage system. The workload is then assigned to a subset of resources with the least penalty index.
A method for processing data packets in a communication network includes establishing a path for a flow of the data packets through the communication network. At a node along the path having a plurality of aggregated ports, a port is selected from among the plurality to serve as part of the path. A label is chosen responsively to the selected port. The label is attached to the data packets in the flow at a point on the path upstream from the node. Upon receiving the data packets at the node, the data packets are switched through the selected port responsively to the label.
A network monitoring device monitors at least one tap point corresponding to a network interface between User Equipment (UE) and one or more additional nodes in the communication network, detects one or more transactions at the at least one tap point corresponding to the network interface with each transaction including request data and response data. The network monitoring device further determines a time associated with the request data and a time associated with the response data for each transaction, determines a delay time for each transaction for the at least one tap point by a difference between the time associated with the request data and the time associated with the response data, assigns the delay time for each transaction to one or more a predefined time ranges, and increments a count corresponding to the one or more predefined time ranges when the delay time is assigned.
A streams manager monitors performance of a streaming application and determines if operators are underperforming according to a threshold. When the performance needs to be improved, the streams manager automatically modifies the flow graph to offload or reroute a stream of data, or part of a stream of data, to a similar operator to more efficiently utilize streaming resources. Operators are provided with multiple ports to allow the streams manager to send additional streams to the operator.
A method and system for providing decision-time brokerage in a hybrid cloud ecosystem is disclosed. Disclosed embodiments may include receiving a workload input by a brokerage engine executing in a computing device communicably connected to at least one cloud computing node in a cloud platform of a cloud service provider, determining resource optimization for the workload input by the brokerage engine, monitoring the workload input for compliance with one or more audit and regulatory metrics, monitoring the cost consumption of the workload input, capturing non-functional context data associated with the workload input into a context repository database, applying one or more rules to the workload, deploying the workload across the one or more cloud platforms. In some embodiments, a deployment recommendation may be provided prior to deployment of the workload. In some embodiments, a social collaboration workflow may be triggered whereby one or more users are provided the deployment recommendation.
A method for dynamically creating and routing custom network records with a server system on a service provider network before session timeout is disclosed according to an embodiment. The server system assembles a custom mapping from a mapping data store, determines that a request corresponds with a quantity of event instances in a network record that exceeds a calculated threshold, and creates the custom mapping within each event instance of a network record while the network record is stored in a records data store. The method includes the server system generating the hierarchy within the custom mapping created at each event instance of the network record, initiating a plurality of threads, and determining, using the plurality of threads, a plurality of event instances based on the request and hierarchy generated. A plurality of custom network records are generated in a staging table stored outside of the records data store.
Software, firmware, and systems are described herein that migrate functionality of a source physical computing device to a destination physical computing device. A non-production copy of data associated with a source physical computing device is created. A configuration of the source physical computing device is determined. A configuration for a destination physical computing device is determined based at least in part on the configuration of the source physical computing device. The destination physical computing device is provided access to data and metadata associated with the source physical computing device using the non-production copy of data associated with the source physical computing device.
Creating virtual links including: determining a first network appliance to configure to communicate with a second network appliance using a virtual link, wherein the virtual link comprises a layer three overlay point-to-point data link; and determining the second network appliance to configure to communicate with the first network appliance using the virtual link.
A system for managing networked devices comprising a plurality of racks of computing devices, each rack computing device further comprising a plurality of constraints and configured to operate one or more hosted systems, each rack comprising a bit vector stored in a data memory defining the minimum available set of constraints for each of the plurality of rack computing devices. A plurality of enterprises, each comprising one or more enterprise computing device configured to operate a virtual network system that is configured to interactively operate with the one or more hosted systems of one of the rack computing devices. A network function virtualization system configured to receive a service request and to determine that a new hosted system is required to respond to the service request, and to select a rack for instantiation of the new hosted system as a function of the plurality of bit vectors.
A receiver detects a received signal, transmitted by a transmitter to carry payload data as Orthogonal Frequency Division Multiplexed (OFDM) symbols in divided frames, each frame including a preamble including plural bootstrap OFDM symbols. A detector circuit detects, from the bootstrap OFDM symbols, a synchronization timing for converting a useful part of the bootstrap OFDM symbols into the frequency domain. A bootstrap processor detects an estimate of the channel transfer function from a first OFDM symbol, and a demodulator circuit recovers the signaling data from the bootstrap OFDM symbols using the estimate. The bootstrap processor includes an up-sampler configured to receive the bootstrap OFDM symbols, to form an up-sampled frequency domain version of the bootstrap OFDM symbol, and an output processor configured to identify a peak correlation result, to determine frequency offset of the received signal from a relative position of the peak correlation result in the frequency domain.
Aspects of the present disclosure provide systems, methods, and apparatuses for implementing the multiplexing of different orthogonal frequency-division multiplexing (OFDM) waveforms using a transmitter and receiver configured to process different types of signals without a need for distinct hardware structures. In one example, aspects of the present disclosure may include a transmitter configured to transmit both a first type of discrete fourier transform (DFT)-spread OFDM waveform and a second type of DFT-spread OFDM waveform that may be multiplexed over the wireless channel. In some aspects, the transmitter may modify the numerology of the zero-tail DFT-spread OFDM waveform to match the numerology of other OFDM waveforms (e.g., OFDM waveform with zero-guard or a single carrier DFT-spread OFDM with zero-guard).
For example in case of an OFDM multicarrier transmission system the transmission characteristics of subcarriers of a multicarrier transmission system using a plurality of antenna elements (3, 3′) can be adjusted. Particularly the power and the phase of the subcarriers can be adapted. To this object the subcarrier frequency channel (2, 2′) characteristics of the multicarrier transmission are detected (11, 11′) at the side of the transmitter (3). The power of each subcarrier is then distributed by a weighting unit (14, 14′). The subcarriers can be further pre-equalized (1, 1′) by dividing the subcarrier signal respectively by the sum of the squared magnitude of the frequency channel characteristics of all subcarrier signals or a frequency characteristic of the selected antenna element (3, 3′).
Disclosed is a cooperative spectrum sensing system using sub-Nyquist sampling, which include: a plurality of secondary user terminals for detecting a frequency band occupied by a primary user terminal; and a fusion center, wherein each of the secondary user terminals may include: a receiving unit for receiving signals from the primary user terminal; a sampling unit for performing the sub-Nyquist sampling for the received signals at a predetermined down-sampling rate; an energy-detecting unit for detecting the frequency band occupied by the primary user terminal by detecting energy for the sampled signals; and a calculating unit for calculating a correct detection probability and a false alarm probability for the frequency band occupied by the primary user terminal by using spectrum of the frequency band, and for transmitting results of calculation to the fusion center.
A transceiver includes: a baseband control apparatus (21); an up-conversion apparatus (22), connected to the baseband control apparatus (21), and configured to perform up-conversion on a baseband signal generated by the baseband control apparatus (21), to obtain an intermediate frequency signal; at least two radio frequency channels (23) disposed in parallel, connected to the up-conversion apparatus (22), and configured to perform frequency conversion, amplification, and filtering on the intermediate frequency signal, to obtain a radio frequency signal corresponding to the frequency band covered by the each radio frequency channel; and an antenna (24), connected in series with an output end of any radio frequency channel of the at least two radio frequency channels (23), and configured to transmit the radio frequency signal obtained by the radio frequency channel. The transceiver enables relatively high wireless communication performance when an ultra wide bandwidth is implemented.
Methods and apparatus for resuming radio channel measurements and estimations after an interruption in reception. In one exemplary embodiment of the present disclosure, an adaptive solution is provided for channel estimation based at least in part on the reception interruption duration. In one variant, an LTE UE determines a windowing length and/or “shape” for a time domain channel estimation algorithm based on at least the interruption duration. In an alternate variant, an LTE UE determines the interpolation coefficients for a filter based on the interruption duration.
An information presenting method includes: receiving, from a refrigerator, a signal including an identification result of an identified user; extracting a scheduled future event by referring to schedule information corresponding to the user, based on the identification result of the user, the schedule information being included in a plurality of pieces of schedule information of users; determining an item associated with the extracted scheduled future event; generating information including information that is to be presented to the user, based on the determined item, the information that is to be presented to the user being included in stock information that relates to one or more items stored in the refrigerator; and transmitting, to an apparatus through the network, a signal for causing the apparatus to output the generated information.
Circuits and techniques are described for detecting a ground fault leak between the PSE and the PD. Prior to PoDL voltage being applied to the PD, a test switch is temporarily closed for sensing a voltage drop in a loop between the positive terminal of the PSE voltage source and any ground leakage path between the PSE and the PD. If the resistance of the ground leakage path is below a certain threshold, a fault is declared. A similar test may be performed without a test switch by supplying a known test current through the loop and sensing the voltage drop. Another test is to connect the positive terminal of the PSE voltage source to the loop and sense the resulting current. After the full PoDL voltage is applied to the PD, a ground fault may be detected by sensing the equivalence between the source and return PSE currents.
A method includes extracting a set of enrollment feature points from an enrollment biometric measurement. The method also includes randomly selecting one or more enrollment code words from an error correction code. The method also includes determining obfuscated enrollment feature point data describing an obfuscated version of the set of feature points that is obfuscated using the one or more enrollment code words. The method also includes determining obfuscated enrollment code word data describing an obfuscated version of the one or more enrollment code words that is obfuscated using a random enrollment polynomial. The method also includes determining an enrollment biometric template including the obfuscated enrollment feature point data and the obfuscated enrollment code word data. The method includes generating a public key based on the random enrollment polynomial that obfuscates the random enrollment polynomial. The method also includes determining enrollment data including the enrollment biometric template.
A method and system secures an encryption key for utilization on a secured network by receiving, at a trusted node, an encryption key request from a requesting node, the encryption key request including a public encryption key of a public/private encryption key pair associated with the requesting node; determining, at the trusted node, if the requesting node has previously supplied enough virtual currency to support the request; choosing an encryption key for distributing to the requesting node when it is determined the requesting node has enough virtual currency; encrypting the chosen encryption key with the public encryption key of a public/private encryption key pair associated with the requesting node; and sending the encrypted encryption key to the requesting node.
A frequency modulation receiver includes a frequency modulation demodulation circuit that generates a first signal, and a phase locked loop (PLL) circuit coupled to the frequency modulation demodulation circuit to receive the first signal. The PLL circuit includes: a voltage-controlled oscillator (VCO), generating an oscillation output signal according to a filtered output signal; a phase detector, coupled to the VCO, generating a phase signal according to the oscillation output signal and the first signal; and a proportional-integral-derivative (PID) filter, coupled to the VCO and the phase detector, receiving the phase signal and generating the filtered output signal to the VCO.
A method and apparatus for half-duplex (HD) frequency division duplex (FDD) (HD-FDD) operation are disclosed. The method in a wireless transmit/receive unit (WTRU) includes monitoring a first frequency for all downlink sub-frames for downlink communication except during a cell specific uplink frame, retuning to a second frequency and transmitting a scheduling request (SR) during a WTRU specific period of the cell specific uplink frame, wherein the WTRU specific period is based on a duty cycle, and retuning to the first frequency and receiving an uplink grant in a subsequent sub-frame.
The present disclosure provides a method for performing beamforming. The method includes initiating a first signal transmitted from a target second device to be received by a first device having an antenna array. A first beamforming weight matrix is generated by the first device that automatically corrects amplitude and phase errors of the antenna array and maximizes antenna gain toward the target second device using a covariance matrix derived from the received first signal. An enhanced second beamforming weight matrix is then generated by the first device using a mask window or a jointly optimized algorithm to further suppress interference to and from other active second devices. The enhancement is computed and applied based on the distribution of multiple active second devices. The antenna array is steered using the second beamforming weight matrix to transmit to and receive from the target second device with an optimized antenna beam pattern.
Apparatus and method for communicating control data indicative of the capability of RF receiver equipment in wireless telecommunications devices. The control data is then used to allocate transmission resources to the telecommunications devices (including MTC-type terminals). Where a virtual carrier is established to carry data for a given MTC-type device, the position of the center frequency for that virtual carrier is assigned on the basis of both the capability of the RF receiver equipment of that terminal and the degree of traffic congestion on the frequency band at which the virtual carrier has been established.
The present disclosure discloses a baseband data storage control method, including: receiving cell configuration information of each subframe, mapping each cell into a preset cell set according to bandwidth and quantity of antennas in the cell configuration information, where each cell set corresponds to a random storage region; analyzing each cell included in each cell set and cell parameters corresponding to each cell, and computing storage addresses for each cell in the random storage region according to obtained cell parameters; and storing received baseband data into a random storage region corresponding to a cell to which the baseband data belong, according to the computed storage address. The present disclosure further discloses a baseband data storage control device.
Implementations related to updating channel adaptation parameters are described. In one implementation, an R2T frame, such as an acknowledgment (ACK) frame, is modified to carry a partial bit allocation table (BAT). The R2T frame may be received by a transceiver apparatus and the partial BAT carried in the header or extended header(s) of R2T frame may be used to update a BAT stored in the transceiver. In another implementation, a message frame is modified to carry a partial BAT. The message frame may be received by a transceiver apparatus and the partial BAT used to update a BAT stored in the transceiver. A unique identification number generated by the receiving transceiver apparatus may be used to synchronize BATs stored in two communicating transceivers without necessity of exchanging additional control messages.
A transmission method and an FBMC transmitter to transmit at least a first and a second block of symbols (X0, X1), each symbols block including a temporal sequence of L vectors with predetermined size N. It uses a first and a second FBMC modulation channel, each FBMC modulation channel being associated with an antenna. During a first use of the channel, the vectors of the first block and the vectors of the second block are input to the first and to the second FBMC modulation channels respectively, in the order of the temporal sequence. During a second use of the channel, the vectors of the first and second blocks are multiplied by a factor jL 1 respectively and −(jL 1) input to the second and to the first FBMC modulation channels respectively, in the inverse order of the temporal sequence.
The present invention relates to methods for concurrent transmission and reception of information symbols over time-frequency resource elements in a wireless communication system. According to the present invention coded bits interleaving is combined with symbol spreading using LDS signatures. Thereby, the performance of coded LDS transmissions can be substantially improved in wireless communication systems. Furthermore, the invention also relates to corresponding transmit device, receiver device, computer program, and computer program product.
A method includes communicating data in a channel. Received symbols for the data correspond to points of a received symbol space respectively. First and second dimensions of the received symbol space correspond to a real part and an imaginary part of the received symbols respectively. A first received symbol for the data is obtained. A first region of the received symbol space for the first received symbol is determined. A first regression model associated with the first region and a first bit of the first received symbol is retrieved from a storage. The first regression model includes a plurality of regressors. A first log-likelihood ratio (LLR) for the first bit of the first received symbol is estimated using the first regression model.
Disclosed herein are systems and methods for forward packet recovery in a communication network with constrained overhead. In exemplary embodiments, a target byte protection ratio is determined. Error correcting frames are dynamically generated by a first processor such that error correcting information can be generated to approximate the target byte protection ratio. The data packets and error correcting information are then transmitted across one or more communication networks to a second processor. The second processor can use the error correcting information to regenerate or replace data packets missing or corrupted in transmission across one or more communication networks.
Methods and systems for optimizing the transmission of superchannels with different modulation formats may include pre-calculating different guardband (GB) values between superchannels and sets of power values for subcarriers to implement subcarrier power pre-emphasis (SPP). When a request for an optical path is received at a network management system, the spectral allocation of each superchannel, including a GB, is determined according to pre-specified rules based on co-propagation of the superchannels with different modulation formats.
A transceiver separates wavelength-division-multiplexing (WDM) components into two groups, one of which is more sensitive to temperature than the other group. The temperature-sensitive group of optical components is implemented on a first substrate in the transceiver that has a lower thermo-optic coefficient than a second substrate in the transceiver, which contains the group of optical components that is less temperature sensitive. In particular, the first substrate, which may be glass, may include WDM components that convey optical signals having multiple carrier wavelengths. Moreover, the second substrate, such as a silicon substrate (e.g., a silicon-on-insulator platform), may include multiple parallel optical paths with optical components, in which a given optical path conveys an optical signal having a given carrier wavelength.
The portable music studio is a modular apparatus that records and mixes music in real time. The portable music studio comprises a dock and a controller. The dock is a switching device that receives a first set of one or more audio signals from a first set of one or more audio sources and routes the each of the received audio signals as a first multichannel audio signal to the controller. The controller is a logic device that independently records each channel of the multichannel signal and directly receives and records a second set of one or more audio sources. The controller mixes this plurality of recorded audio sources. The portable music studio further generates musical audio input directly from the controller. The controller is separable from the dock to allow for recording, mixing and making audio files at a remote location.
An apparatus comprising an arrayed waveguide grating (AWG) comprising a plurality of AWG ports, a power splitter comprising a plurality of splitter ports, and a plurality of optical interleavers, each coupled to a respective AWG port and a respective splitter port, for directing incoming optical signals to one of the AWG and the power splitter.
A radio communication device may be provided. The radio communication device may include: a receiver configured to receive data using an antenna on a first carrier and a second carrier; an operation mode determination circuit configured to determine an active antenna operation mode based on information of the first carrier and information of the second carrier; and an antenna controller configured to control the antenna to operate in the determined active antenna operation mode.
A method for providing precoding weights for data symbols of data control subframes includes generating a downlink frame having control subframes which individually correspond to one of a plurality of downlink data subframes, and inserting weight information into each of the control subframes, such that the weight information is to be applied to data symbols present in the corresponding one of the data subframes. The method further includes transmitting the control subframes and the inserted weight information to a receiving device.
The invention is directed to systems, methods and computer program products for optimizing a wireless channel between a user equipment (“UE”) and a base station (“BS”). An exemplary method comprises instructing the UE to transmit a first pilot signal from a first antenna of the UE and a second pilot signal from a second antenna of the UE; estimating a first wireless channel for the first antenna and a second wireless channel for the second antenna; defining a first parameter of a first filter for the first wireless channel and a second parameter of a second filter for the second wireless channel; and transmitting the first parameter and the second parameter to the UE.
Methods and apparatuses for CSI reporting mechanisms are provided. A user equipment (UE) apparatus includes a transceiver and a processor. The transceiver is configured to receive configuration information for a channel state information (CSI) reporting and receive configuration information for a plurality of precoding codebook parameters. The processor is operably connected to the transceiver, and configured to calculate, in response to receipt of the configuration information for the CSI reporting and the configuration information for the plurality of precoding codebook parameters, a first precoding matrix indicator (PMI) and a second PMI, wherein the first PMI includes one or two codebook indices. The transceiver is further configured to transmit the CSI reporting on an uplink channel, the CSI reporting including a channel quality indicator (CQI), a rank indicator (RI), and the calculated first and second PMIs.
A method for determining a precoding matrix indicator, user equipment, and a base station are disclosed in embodiments of the present invention. The method includes: receiving a first reference signal set sent by a base station, where the first reference signal set is associated with a user equipment-specific matrix or matrix set; selecting a precoding matrix based on the first reference signal set, where the precoding matrix is a function of the user equipment-specific matrix or matrix set; and sending a precoding matrix indicator to the base station, where the precoding matrix indicator corresponds to the selected precoding matrix. In the embodiments of the present invention, CSI feedback precision can be improved without excessively increasing feedback overhead, thereby improving system performance.
A cooperative multi-user multiple input, multiple output (MIMO) antenna array comprises a MIMO subspace processing system communicatively coupled to a set of antennas residing on multiple ones of a plurality of geographically distributed wireless terminals in a Mobile Radio Network. The MIMO subspace processing system can comprise a distributed computing system. The MIMO antenna array is adapted by updating the set of antennas to produce a second set of antennas; selecting an updated set of distributed computing resources, if necessary, to perform MIMO subspace processing; and reconfiguring the MIMO subspace processing to employ channel state information of the second set to enable multiple non-interfering subspace channels occupying a common frequency.
The concepts, systems and method described herein provide a scalable beam steering control system having a primary beam steering controller and one or more secondary beam steering controllers to control a direction of a beam generated by an antenna array. The scalable beam steering control system may include a plurality of array blocks, each array block having one or more array elements. The primary controller block may be coupled to at least one array block and include a beam steering module to generate beam steering signals for the one or more array elements of the array block. The one or more secondary controller blocks may be coupled to the primary controller block and at least one array block. In an embodiment, each secondary controller block may include a beam steering module to generate beam steering signals for array elements of at least one array block.
The present invention is to provide a power line communication adapter capable of being freely assembled by accessories thereof, which includes an anti-noise device having a first male plug for receiving a power line communication signal from a power outlet, a first female socket for connecting the first male plug with an electrical equipment through a filter module, and a first adapting port connected to the first male plug, such that noise generated by the electrical equipment device can be filtered by the filter module without interfering the power line communication signal; and a power line communication device having a power line communication module along with a second adapting port connected thereto such that, when the first and second adapting ports are connected with each other, the power line communication device and the anti-noise device are combined into an anti-noise adapter for receiving and transmitting the power line communication signal.
This disclosure provides systems, methods, and apparatus for wireline communication. Independent control of probing signals transmitted on different power line couplings may be used to characterize power line communication (PLC) signal leakage on a set of digital subscriber line (DSL) lines. For example, PLC packets may be sent on a primary coupling and an alternate coupling, and PLC signal leakage from these couplings may be measured by a device, such as a PLC device or a DSL device, connected to the set of DSL lines. The measurements from each coupling may enable a determination as to which of the couplings (either primary or alternate) is more imbalanced and results in relatively more PLC signal leakage into the set of DSL lines. Accordingly, a transmission power and a precoder may be determined based on the measured PLC signal leakage to mitigate interference on the twisted pair.
A monolithic integrated circuit (IC), and method of manufacturing same, that includes all RF front end or transceiver elements for a portable communication device, including a power amplifier (PA), a matching, coupling and filtering network, and an antenna switch to couple the conditioned PA signal to an antenna. An output signal sensor senses at least a voltage amplitude of the signal switched by the antenna switch, and signals a PA control circuit to limit PA output power in response to excessive values of sensed output. Stacks of multiple FETs in series to operate as a switching device may be used for implementation of the RF front end, and the method and apparatus of such stacks are claimed as subcombinations. An iClass PA architecture is described that dissipatively terminates unwanted harmonics of the PA output signal. A preferred embodiment of the RF transceiver IC includes two distinct PA circuits, two distinct receive signal amplifier circuits, and a four-way antenna switch to selectably couple a single antenna connection to any one of the four circuits.
Aspects of this disclosure relate tuning an impedance presented to a common port of a multi-throw switch. The impedance can be tuned based on an impedance associated with a throw of the multi-throw switch that is activated. This can, for example, provide impedance matching for a duplexer port coupled to a throw of the multi-throw switch that is activated. According to embodiments of this disclosure, a shunt inductor in parallel with a tunable capacitance circuit can tune the impedance presented to the common port of the multi-throw switch. The shunt inductor and the tunable capacitance circuit can be coupled to a node in a signal path between an antenna switch and an antenna port in some embodiments.
A multi-band RF multiplexer for routing transmit and receive signals in a radio RF front end. According to one aspect, the disclosure provides a multiplexer for routing transmit signals to an antenna and routing receive signals to a receiver. The multiplexer provides a first hybrid coupler having a first frequency response and a second hybrid coupler having a second frequency response. The second hybrid coupler is coupled to the first hybrid coupler by a plurality of splitters. The second frequency response complements the first frequency response to increase cancellation of two signals arriving at an output port of the second hybrid coupler from two different paths through the first and second hybrid couplers.
Methods, devices, and computer programs are provided for character conversion. An original file is compressed, for instance, by a source or target device, to obtain a compressed file. Then, characters in the compressed file are converted from a source code page to a target code page to obtain a converted compressed file. The converted, compressed file may, where applicable, be sent to a target device. Also, the target device may decompress the converted compressed file to obtain a file in the target code page.
A method for determining a mapping between two code spaces is disclosed. The method may include receiving first and second plurality of data words. The least-significant-bits (LSBs) of a first data word of a first subset of the first plurality of data words may be compared to the LSBs of each data word of a second subset of the second plurality of data words. The first data word may then be mapped to a second data word of the second subset. A number of LSBs of the second data word matching LSBs of the first data word may be greater than a respective number of LSBs of each data word of a third subset of the second subset matching the LSBs of the first data word, where the third subset excludes the second data word and a most-significant-bit (MSB) of the second data word may be the same as a MSB of the first data word.
A time-interleaved digital-to-analog converter (DAC) uses M DAC cores to convert a digital input signal whose digital input words are spread to different DAC cores to produce a final analog outputs. The M DAC cores, operating in a time-interleaved fashion, can increase the sampling rate several times compared to the sampling rate of just one DAC. However, sequential time-interleaving DAC cores often exhibit undesirable spurs at the output. To spread those spurs to the noise floor, the time-interleaving DAC cores can be selected at a pseudo randomized manner or in a specific manner which can break up the sequential or periodic manner of selecting the DAC cores.
Aspects of a method and system for a successive approximation analog-to-digital converter with dynamic search algorithms are provided. In some embodiments, a successive approximation analog-to-digital converter includes a digital-to-analog converter, a comparator, and a search and decode logic modules which cooperate to generate a digital output code representative of the analog input voltage based on a dynamic search algorithm. The dynamic search algorithms may alter a sequence of reference voltages used to successively approximate the analog input voltage based on one or more characteristics of the analog input voltage.
An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein, are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.
An apparatus includes a signal generator. The signal generator includes a voltage controlled oscillator (VCO) coupled to provide an output signal having a frequency. The signal generator further includes an asymmetric divider coupled to receive the output signal of the VCO and to provide an output signal. The output signal of the asymmetric divider has a frequency that is half the frequency of the output signal of the VCO. The asymmetric divider presents a balanced load to the VCO.
An oscillation signal generation circuit includes an oscillator and a calibration circuit. The oscillator includes a reference signal source circuit that has a reference signal source outputting a reference signal and converts the output reference signal into a control voltage, a filter that includes a variable resistance and a capacitance and removes noise in the control voltage, a transistor that converts the control voltage which has passed through the filter into a control current and outputs the control current, a core circuit that is driven by the control current and generates an output signal, and an output terminal that outputs the generated output signal. The calibration circuit is connected to the output terminal of the oscillator, detects whether or not the generated output signal is oscillating, and adjusts the current value of the control current by controlling the resistance value of the variable resistance in accordance with the detection result.
A low clock power data-gated flip-flop is provided. The data-gated flip-flop includes an exclusive OR component including a first exclusive OR input, a second exclusive OR input, and a first exclusive OR output. The first exclusive OR input is configured to receive a data input to the data-gated flip-flop. The data-gated flip-flop includes a first latch including a first latch data input and a first latch reset input, the first exclusive OR output being coupled to the first latch data input and the first latch reset input. The data-gated flip-flop includes a second latch having a data output, the data output coupled to the second exclusive OR input.
Disclosed is a beacon for allowing a user to wirelessly manage software applications of a computing device and plurality of vehicle's sensors. The beacon includes a housing, a touch sensor to identify tap from the user, a bi-directional communication unit to wirelessly bi-directionally communicate with the computing device and the vehicle's sensors on receiving tap from the user, a memory unit to store plurality of modules and plurality of instructions, wherein each instruction corresponding to each tap and a processor coupled to the memory unit and configured in the housing to process the plurality of modules. The plurality of modules includes a computing device module opens the specific software application based upon specific number of taps received from the user; a vehicle sensor module operates a specific vehicle sensor based upon a specific number of taps receive from the user; and a vehicle sensor and computing device module opens the status of the vehicle sensor on the computing device depending upon the specific number of taps received from the user.
A semiconductor device is provided which realizes speed-up and cost reduction. The semiconductor device has a high side gate driver including a depression type FET and an enhancement type FET, a low side gate driver including a depression type FET and an enhancement type FET, and a high side power FET and a low side power FET as field-effect transistors, in which the high side gate driver, the low side gate driver, the high side power FET and the low side power FET are integrated in the same chip.
A system and method for a high-side power switch includes a gate driver configured to be coupled to a power switch, a voltage measurement circuit configured to be coupled directly to the power switch, a switch monitoring circuit configured to be coupled to the power switch, the switch monitoring circuit configured to measure an output current of the power switch, a current limitation circuit coupled to the gate driver and the switch monitoring circuit, the current limitation circuit configured to regulate gate-source voltage of the gate driver when the output current exceeds a threshold value, and a controller coupled to the current limitation circuit and the voltage measurement circuit, the controller configured to determine a mode of operation according to a startup voltage measured by the voltage measurement circuit during a startup sequence, the controller further configured to provide the threshold value to the current limitation circuit according to the mode of operation and a switch voltage measured by the voltage measurement circuit.
The present invention relates to a solid-state relay including a power semiconductor switch device connected between a first electrical terminal and a second electrical terminal and having a command terminal. An electronic driving block is adapted to generate a command signal applied to the command terminal to switch the at least one semiconductor switch device from a closed/open state to an open/closed state to disconnect/connect the first electrical circuit portion from/to the second portion of the electrical circuit. An electronic block detects a current which crosses the power semiconductor switch device. The electronic detection block includes a first electronic device adapted to generate a first signal indicative of a difference of potential between the first and second terminals generated by the current which crosses a total resistance present between the first and second terminals of the power semiconductor switch device in the closed state. The total resistance comprises the sum of a first resistance associated with the semiconductor switch device in the closed state and of second bonding resistances associated with an electrical connection between one of the conductive terminals and the respective either first or second electrical terminal.
An RF quasi circulator circuit is described herein. In accordance with one example of the disclosure the circuit includes a receive port, a transmit port and an antenna port as well as a differential amplifier stage having a first input, a second input and an output that is coupled to the receive port. The circuit further includes a first phase shifting element and a second phase shifting element. The first phase shifting element is coupled between the transmit port and the first input of the differential amplifier and the second phase shifting element is coupled between the transmit port and the second input of the differential amplifier. A tunable impedance is coupled to the differential amplifier, and the antenna port is coupled to the first input of the differential amplifier. The tunable impedance is controlled to tune the damping in a signal path from the transmit port to the receive port.
There is provided a signal splitter comprising at least four outputs and a plurality of step-up transformers, wherein each step-up transformer has less than seven turns. A first step-up transformer is connected to a common port and positioned between the input and second and third step-up transformers. The first step-up transformer has a different number of turns to the second and third step-up transformers.
Embodiments of the present disclosure provide apparatuses and methods for balancing parasitic capacitances between metal tracks in an integrated circuit chip. Specifically, additional capacitances in the form of, for example, tab capacitors, are attached to the metal tracks with the intention of detaching a select number of the attached capacitances for the purpose of balancing the parasitic capacitances between the metal tracks. The attached capacitances may be structural metal elements. Further, the attached structural metal elements may be detachable at thin-film resistive material associated with each of the attached structural metal elements.
A programmable amplifier includes an amplifier, an input capacitor, a feedback circuit, and a high-pass filter circuit. The amplifier has an input coupled to the input capacitor for receiving an input signal. The feedback circuit includes multiple feedback capacitors of differing capacitance values that are each selectively coupled between the output of the amplifier and the input of the amplifier using multiple first switches. The high-pass filter circuit includes multiple switched capacitors of differing capacitance values that are each selectively coupled between the amplifier output and a ground node using multiple second switches. The first switches are configured to be selectively switched on for activating at least one feedback capacitor to adjust a gain of the amplifier, while the second switches are configured to be selectively switched at a first and second phase of a clock signal to adjust a high-pass cutoff frequency of the amplifier independently of how the gain is adjusted.
The present invention relates to a power control method of an amplifying module. The amplifying module comprises a control device and an amplifying device, wherein the control device is electrically connected to the amplifying device and provides a bias current and a supply voltage to the amplifying device. Further, the control device is able to adjust the supply voltage, the bias current or the bias voltage provided to the amplifying device according to the power mode of the amplifying device.
Radio frequency (RF) filters configured to filter undesired signal components (e.g., noise and harmonics) from RF signals are disclosed. In one embodiment, an RF filter includes a first inductor coil having a first winding and a second inductor coil having a second winding and a third winding. The second winding of the second inductor coil is configured to have a first mutual magnetic coupling with the first winding, while the third winding of the second inductor coil is configured to have a second mutual magnetic coupling with the first winding. The second winding is connected to the third winding such that the first mutual magnetic coupling and the second mutual magnetic coupling are in opposition. In this manner, the first inductor coil and the second inductor coil may be provided in a compact arrangement while providing weak mutual magnetic coupling between the first inductor coil and the second inductor coil.
Embodiments of a Doherty amplifier device are provided, where the device includes a main amplifier that produces a first RF signal with a variable first output power and a peaking amplifier that produces a second RF signal with a variable second output power equivalent to the first output power multiplied by a power ratio n greater than one; first and second RF signals combined in phase at a combining node; and a main output matching network (OMN), wherein the main OMN forms a portion of an equivalent main path transmission line having a characteristic impedance equivalent to ( n + 1 ) · Ropt · R 0 , wherein Ropt is a load impedance seen at the main amplifier intrinsic current generator plane during a full power condition of the Doherty amplifier device and R0 is a load impedance seen at the combining node during a back-off power condition of the Doherty amplifier device.
Building integrated photovoltaic (BIPV) systems provide for solar panel arrays that can be aesthetically pleasing to an observer, with minimal visible difference between photovoltaic and non-photovoltaic areas of the BIPV system. BIPV systems can be incorporated as part of roof surfaces as built into the structure of the roof, particularly as roofing tiles that have photovoltaic elements embedded or incorporated into the body of the roofing tiles. BIPV systems can also include mimic or dummy tiles that appear similar to tiles with photovoltaic elements, but do not collect solar energy. In some configurations, the appearance of BIPV tile roof systems can be generally uniform to an observer at ground level, where the blending and distribution of photovoltaic and non-photovoltaic elements generate a consistent and elegant appearance that camouflages any differences between photovoltaic tile or non-photovoltaic tiles.
The invention discloses a real-time vibration state monitoring system. The system includes a linear motor, a signal generating module for driving the linear motor to vibrate, a working parameters feedback module, a calculating module, an initial position recording module, and a signal control module. The system can control the amplitude of the vibrator by monitoring the vibration state of the vibrator in the linear motor and adjusting the drive signal; therefore, the effect to normal working or reliability of the linear motor due to oversized amplitude can be avoided. A monitoring method is also provided.
A motor controller for providing a three-phase alternating current (AC) signal to a three-phase motor. The motor controller uses current feedback from a single shunt to monitor or control the three phase AC signal. The motor controller may include a three-phase DC to AC power inverter, a single-shunt current sensor, and a processor. During individual duty cycles when two or more phase signals are too close to each other, the processor may shift one of the phase signals in time so that its leading or trailing edges are a predetermined conflict time away from each other. Then, the processor may sample current from the single-shunt current sensor to determine currents of two of the three phase signals and then calculate current of a remaining one of the three phase signals. Sample times may depend on pulse widths and shifting of the phase signals.
A power system may include a first motor, a second motor connected in parallel to the first motor, a driver configured to supply a driving current to the first motor and the second motor and a controller configured to control the driver based on the driving current and a rotating speed of the first motor, and when the rotating speed of the first motor is different from a rotating speed of the second motor, the controller may control the driver so that the rotating speed of the first motor is equal to the rotating speed of the second motor. The power system may drive two and more motors at the same speed by applying the driving voltage based on the rotating speed and the driving current of one of two or more motors, using a single driving apparatus.
A synchronous rectifier controller for an adaptive output power converter is provided. The synchronous rectifier controller includes a voltage detection circuit, a threshold generation circuit, and a driver. The voltage detection circuit detects an output voltage of the adaptive output power converter to generate a detection signal. The threshold generation circuit is coupled to the voltage detection circuit. The threshold generation circuit receives the detection signal and generates a synchronous rectifier (SR) turn-off threshold for a synchronous rectifier coupled to a secondary winding of the flyback converter according to the detection signal. The driver receives the SR turn-off threshold and controls the synchronous rectifier according to the SR turn-off threshold.
A switching power supply includes a first switching element connected between a primary winding of a transformer for the switching power supply and the ground, a shunt regulator serving as an output voltage detection circuit configured to detect an output voltage on a secondary winding side of the transformer, a photocoupler configured to transmit the output voltage to a control circuit, a second switching element configured to receive a stop signal for stopping operation of the switching power supply, and a photocoupler drive circuit configured such that when the second switching element has received the stop signal, power output from a low-frequency transformer power supply or the switching power supply is supplied to the photocoupler, and the stop signal is transmitted to the control circuit via the photocoupler.
A power supply can be operated in a low power mode by adjusting the pulses provided to a power supply switch until a pulse resulting in a reduced amount of power that exceeds a minimum power threshold required by a load coupled to the power supply switch is identified. For each successive switching cycle, a pulse causing a lower power to be provided to the load is produced. When a pulse is produced that causes a power to be provided to the load that does not exceed the minimum power threshold required by the load, a subsequent pulse is produced that causes a greater power to be provided to the load than the previous pulse. If the greater power exceeds the minimum power threshold, the subsequent pulse is stored and similar pulses are provided for the remainder of the low power mode.
Various methods and devices that involve electronic circuits are disclosed. A disclosed method includes buffering an input signal using a first buffer. The first buffer is powered by a supply voltage and a reference voltage. The method also includes buffering the input signal using a second buffer. The second buffer is powered by the reference voltage and a ground voltage. The method also includes level shifting a first buffer output signal of the first buffer to a voltage range using a first level shifter, and level shifting a second buffer output signal of the second buffer to the voltage range using a second level shifter. The voltage range is larger than a delta between the supply voltage and the reference voltage. The reference voltage is greater than one quarter of the supply voltage and less than three quarters of the supply voltage.
Provided is a power supply for use in a solar electric production system, including: a first stage having an input connected to a voltage from a photovoltaic panel and an output providing a first voltage different from the voltage from the photovoltaic panel; and a second stage connected to the output of the first stage, the second stage supplying power at a second voltage to a micro-controller, where the output of the first stage is turned on and stable for a period of time before the second stage is turned on to supply the power at the second voltage to the micro-controller.
A circuit includes a transformer configured with a primary winding and a secondary winding that are driven from a voltage supplied by a thermoelectric generator (TEG). The circuit includes a bipolar startup stage (BSS) coupled to the transformer to generate an intermediate voltage. The BSS includes a first transistor device coupled in series with the primary winding of the transformer to form an oscillator circuit with an inductance of the secondary winding when the voltage supplied by the TEG is positive. A second transistor device coupled to the secondary winding of the transformer enables the oscillator circuit to oscillate when the voltage supplied by the TEG is negative. After startup, a flyback converter stage can be enabled from the intermediate voltage to generate a boosted regulated output voltage.
The present invention discloses a switching regulator capable of reducing current ripple and a control circuit thereof. The switching regulator includes a buck power stage circuit and a control circuit. The control circuit includes an operation signal generation circuit and a current source circuit for reducing current ripple. The current source circuit is coupled to the operation signal generation circuit and the buck power stage circuit, for operating a ripple reduction switch therein according to an operation signal, to convert the output voltage to a load voltage between a load node and a reference node, and to reduce a current ripple of the output current, so as to generate a load current which is supplied to a load circuit, wherein the load circuit is coupled between the load node and the reference node, and the current source circuit is coupled between the output node and the load node.
A predicted ripple in the feedback voltage of a switching converter is generated, based on the ripple over a certain number of recent switching cycles. The DC portion of the feedback voltage is filtered out. This predicted feedback voltage ripple is then added to a fixed reference voltage to create a compensated reference voltage. The compensated reference voltage is applied to the non-inverting input of an error amplifier, and the feedback voltage (having a DC component and ripple) is applied to the inverting input of the error amplifier. Thus, substantially the same ripple component is applied to both inputs and cancels out. Therefore, the output of the error amplifier is not affected by the ripple in the feedback voltage, and a non-rippling control voltage is generated by the error amplifier. As a result, the gain-bandwidth product of the converter can be increased for faster response to transients.
The present disclosure relates to a controller and a controlling method of a switching power supply. The controller of the switching power supply is used for turning on and off a power transistor so that inductor current flows through an inductor which is connected in series with the power transistor. The controller includes a frequency-jittering signal generating circuit, a superimpose circuit and a first comparator. The frequency-jittering signal generating circuit generates a frequency-jittering signal variable over time. The superimpose circuit superimposes the frequency-jittering signal on a sampling signal of the inductor current to generate a superimposed signal. The first comparator compares the superimposed signal with a control voltage to generate an OFF signal for turning off the power transistor. The controller of the switching power supply reduces conducted electromagnetic interference by a frequency-jittering control on the sampling signal of the inductor current.
A haptic actuator may include a housing having a top and a bottom, and first and second permanent magnets carried by the top and bottom, respectively, of the housing. The haptic actuator may also include a field member carried by the housing. The field member may include a coil between the first and second permanent magnets, first and second ends, and a first mass between the first end and the coil, and a second mass between the second end and the coil. A first shaft may slidably couple the first mass to the housing, and a second shaft may slidably couple the second mass to the housing. The haptic actuator may also include a first set of biasing members between the first end of the field member and the housing and a second set of biasing members between the second end of the field member and the housing.
To provide an electric-motor rotor including a cylindrical yoke, a resin magnet portion that is formed from resin magnet integrally with the outer periphery of the yoke, a position-detecting magnet that is located on one axial-end side of the resin magnet portion, a plurality of seats that are formed on the axial end surface of the yoke on the side of the position-detecting magnet, each of which includes a pair of protruding portions, and an opening formed between the protruding portions, and a seat connecting portion that is formed with the seats on its top surface, wherein a ribbed runner that supplies the resin magnet to the resin magnet portion through the opening is provided at the opening to form, along with the seat, a seat portion that places thereon the position-detecting magnet.
An improved electromechanical transducer is provided. In an embodiment, the transducer comprises at least two flux modules, each defining a magnetic circuit having a gap; an armature configured to move along a longitudinal axis passing through the gaps; and a gas containment structure laterally surrounding the armature, wherein: the at least two flux modules are provided outside the gas containment structure; and the armature comprises a reinforcing portion laterally outside of the gaps that is wider in a direction parallel to the flux in the gaps than at least one of the gaps.
A motor includes a molded stator; a cooling fan assembled to an end of a shaft protruding from one end face of the molded stator; a fan cover that covers the cooling fan; a capacitor assembly box installed to the molded stator and having a capacitor incorporated therein; a foot plate installed to the molded stator; and a bracket provided on the other end side of the molded stator. The fan cover is formed with a latched to the capacitor assembly box and a claw latched to the foot plate; and holes and to which the claws are latched are formed on the capacitor assembly box and the foot plate, respectively.
A mechanical energy-to-electricity transformer using kinetic energy of a hydraulic machine is provided, including: a power unit, for connecting to the hydraulic machine; a generator, including a rotor, a stator and an output electrode set, the rotor connected to the power unit and twelve magnetic members, the rotor being rotated with a rotational speed lower than or equal to 600 rpm, N pole and S pole of the magnetic members circumferentially alternatively arranged, the stator having thirty-six ditches axially, between every adjacent two ditches forming a tooth, the ditches, teeth, coil units magnetic members defining winding sets circumferentially arranged in intervals by 120 degrees to form a three-phase AC structure electrically connected with the output terminal, the three-phase AC structure being rotatable relative to the magnetic members to generate AC power of 60 Hz and 220 V.
The present invention provides an electricity generation device using a neodymium magnet having a helical structure that generates more electricity from the same torque during the same amount of time than common electricity generation devices using magnets, by helically arranging neodymium magnets, which has magnetic force significantly larger than common magnets, outside a unit coil, and that has improved performance of generating electricity by transmitting magnetic fields in vortexes to the unit coil. The electricity generation device using a neodymium magnet having a helical structure includes a first neodymium magnet, a second neodymium magnet, a third neodymium magnet, a first side magnet, a second magnet, a rod, and a unit coil. The electricity generation device using a neodymium magnet having a helical structure further includes a case, a first cover, a second cover, a cradle, a side gear, a first gear, and a handle.
A method and apparatus for transmitting charging power to a wireless power receiver. The method includes detecting the wireless power receiver by applying different detection powers with different power levels; applying a driving power to drive the detected wireless power receiver; receiving a request signal for communication from the detected wireless power receiver using the driving power; determining whether or not to subscribe the detected wireless power receiver to a wireless power network; transmitting, to the detected wireless power receiver, a response signal to the request signal for communication, the response signal indicating whether or not the detected wireless power receiver is subscribed to the wireless power network; and transmitting charging power to the detected wireless power receiver, when the detected wireless power receiver is subscribed to the wireless power network.
A bicycle control system comprises a first bicycle component and a second bicycle component. The first bicycle component is configured to be mounted to a bicycle and to perform wireless communication. The second bicycle component is configured to be mounted to the bicycle and to perform wireless communication. At least one of the first and second bicycle components is configured to be electrically connected to a battery. One of the first and second bicycle components is configured to wirelessly output a pairing demand signal to the other of the first and second bicycle components in response to charging of the battery.
A battery assembly including: at least one rechargeable lithium battery including a negative electrode including a silicon-containing negative active material selected from silicon, a silicon-carbon composite, and a combination thereof, and a positive electrode including a positive active material; a circuit board electrically connected to the battery assembly; and an outer terminal electrically connecting the battery assembly to an outer power or an outer load, wherein the circuit board includes a charge/discharge element for charging and discharging the battery assembly and a charge/discharge controller electrically connected to the battery assembly and the charge/discharge element, wherein the charge/discharge controller controls the charge and discharge of the battery assembly, and wherein a discharge cut-off voltage of the charge/discharge controller is predetermined as a voltage when LixSi present in the negative electrode during the discharge has an x value of less than or equal to about 1.25.
A method and apparatus for switching AC power to a lamp (or other load) via a two terminal switch device. The switch device comprises a first electrically controlled switch, such as a triac or relay, and a second electrically controlled resistance or switch connected in series to the first switch. A diode is connected in parallel to the second switch. When the first switch is open, only a leakage current is flowing through the switch device, supplied to an AC/DC converter for producing a low DC voltage to the switch device logic and other low-voltage circuits and for charging a capacitor. When the first switch is closed, the second switch is controlled to be conductive for allowing powering the lamp from the AC power. During part of a positive half-cycle of the AC voltage, a closed loop regulates a DC voltage over the second switch terminals for providing a low DC voltage for charging a capacitor. At least during a negative half-cycle of the AC voltage, the low DC voltage is provided from the capacitor.
A charging apparatus includes a power conversion circuit for charging a battery, and a charging control circuit. The battery has a battery net voltage. The charging control circuit includes a conversion control circuit, a sensing circuit and a determining circuit. The conversion control circuit controls the power conversion circuit to generate plural pairs of DC output voltage levels and DC output current levels, wherein each DC output voltage level and its corresponding DC output current level are a voltage-current pair. The sensing circuit senses the DC output voltage levels and/or the DC output current levels. The determining circuit determines the battery net voltage according to plural voltage-current pairs.
The present invention generally relates to the field of uninterruptable power supplies (UPSs) and more specifically, to UPSs using supercapacitors (also may be referred to as ultracapacitors) and/or other capacitor and/or battery elements. In an embodiment, a UPS of the present invention can individually regulate the charging of its capacitive elements to avoid overcharging and/or achieve a more efficient charge state.
A telecommunications enclosure is provided with reliable sealing around cables entering therein. The enclosure includes one or more cable ports with cable seals made from a material that includes an oil-bleed silicone rubber. The cable ports may also have a convoluted or serrated inner surface configured to engage and support the cable seals.
Disclosed is a method for manufacturing a spark plug in which a tip is welded to a ground electrode. After the tip is welded to a distal end portion of the ground electrode, polishing treatment or grinding treatment is performed on at least a part of an edge region of a distal end face of the ground electrode. After the polishing or grinding treatment, an image of the distal end face of the ground electrode and the tip is taken with the use of reflected light and then analyzed by image processing.
An optical device includes a laser or amplifier positioned on a base. The laser includes a ridge of a gain medium positioned on the base such that the base extends out from under the ridge. The ridge includes a top that connects lateral sides of the ridge. Electronics are configured to drive an electrical current through the ridge such that the electrical current passes through one or more of the lateral sides of the ridge.
In various embodiments, an emission source may be provided. The emission source may also include a gain medium including a halide semiconductor material. The emission source may further include a pump source configured to provide energy to the gain medium.
A laser includes first through fourth gain media, first through fifth wavelength selective filters, and first through fourth wavelength selective mirrors. The first through fourth gain media emit laser beams of different wavelengths. Each of the first through fifth wavelength selective filters includes first through fourth input/output ports. The fifth wavelength selective filter selects light of periodic wavelengths. The first through fourth wavelength selective filters have their respective first input/output ports connected to the first through fourth gain media, respectively, have their respective fourth input/output ports connected to the first through fourth wavelength selective mirrors, respectively, and have their respective second input/output ports connected to the first through fourth input/output ports, respectively, of the fifth wavelength selective filter.
A switching connector includes a probe-side connector including a plurality of probe pins, a housing-side connector including a plurality of electrode pads, and a motor configured to cause a contact state and a non-contact state to be switched, by causing the plurality of probe pins and/or the plurality of the electrode pads to move parallel to a direction in which the probe-side connector and the housing-side connector face each other.
A socket includes a socket body having a mounting part, and a holding lever supported on the mounting part to hold a relay mounted at a mounting position of the mounting part. The holding lever includes a support, and a stopper provided on the support and movable between a restriction position at which movement of the relay, positioned at the mounting position, in a removing direction is restricted and a restriction release position at which the restriction of the movement of the relay in the removing direction is released. The holding lever is supported on the mounting part to be movable between a retreat position at which a relay can be mounted and removed and a holding position at which a relay positioned at the mounting position can be held when the stopper is positioned at the restriction position such that the stopper covers a center-of-gravity position of the relay.
The embodiments of the present disclosure relate to a zipper type electrical connector comprising: a first chain and a second chain; a plurality of engaging elements provided on the first and second chains respectively; and a slider slidably connected to the first and second chains, such that the engaging elements on the first and second chains are switched between an engaged state and a disengaged state; wherein, in the engaged state, the engaging elements on the first chain and those on the second chain are arranged close to and staggered with respect to each other, and at least one of the engaging elements on one of the first and second chains and at least one of the engaging elements on the other of the first and second chains are connected to each other one by one to achieve an electrical connection.
An electrical connector assembly, including: an insulating body, concavely provided backward with an insertion cavity at its front end; multiple terminals, each having an elastic contact portion extending into the insertion cavity; a metal shell wrapping the insulating body; a shielding sheet, provided with an elastic piece protruding and extending into the insertion cavity; and a dustproof base, having a tongue and two guide walls located on two sides of the tongue. The guide walls fit with outer wall surfaces of the metal shell to fix and guide the tongue to be horizontally inserted into the insertion cavity. At least one of the elastic piece and the elastic contact portion elastically abuts the tongue to further fix the dustproof base, thus easily fixing the dustproof base.
A modular electrical connector having the characteristics of simple manufacturing process, reduced manufacturing cost and high production yield is disclosed to include two signal terminal sets arranged one above the other in a staggered manner to provide a compensated structure, and an electrically insulative terminal block including a mounting block and a mating connection block and molded on the signal terminal sets by injection molding. The connection segments of the signal terminals of the two signal terminal sets are bent to move the mounting block and the mating connection block toward each other to further force a positioning portion of the mounting block into engagement with a positioning groove of the mating connection block.
Connectors that may be used to connect optional or daughter cards or modules to main logic boards or motherboards in electronic devices. These connectors may have a reduced effective height and may be able to support high data rates. Cards in these connectors may be secured in place in an electronic device to avoid being inadvertently dislodged. The connectors may accept a card such as a solid state drive, memory card, subscriber identification module, or other type of card. Examples may also provide cards to be inserted in the connectors and boards to support the connectors.
The present invention relates to a transmitting device and a receiving device. The transmitting device includes a controller, at least a feeding antenna and a plurality of transceiving modules. The controller generates a plurality of set of module control signals; the feeding antenna radiately transmits at least an internal transmission signal. Each transceiving module includes a plurality of transceiving units, and each transceiving unit includes a radiation slice and a transceiving circuit. A lengthwise edge of the radiation slice has a first end and a second end, and the first end and the second end of the lengthwise edge are toward an inner lateral side and an outer lateral side, respectively. The transceiving module performs transmission operation or reflection operation according to the module control signals.
The device includes radio frequency (RF) communication components installed within a case of the device and an antenna with an inverted E shape mounted within a header of the device. The antenna has three branches extending from a main arm: a capacitive branch connecting one end of the main arm to the case; an RF signal feed branch connecting a middle portion of the main arm to the internal RF components of the device via a feedthrough; and an inductive branch connecting the opposing (far) end of the main arm to the case to provide a shunt to ground.
Disclosed are an electrolyte for a rechargeable lithium battery including a lithium salt, organic solvent and an additive including a compound represented by the following Chemical Formula 1 and a rechargeable lithium battery including the same. In the above Chemical Formula 1, R is the same as described in the detailed description.
The invention relates to solid-state electrolytes for use in lithium-air batteries or in lithium-water batteries. It is the object of the invention to provide solid electrolyte for use in lithium-air batteries or lithium-water batteries, with the solid electrolyte having sufficient strength, good conductivity for lithium ions, imperviousness for gas and water resistance and being inexpensive in manufacture. The solid-state electrolyte in accordance with the invention has an open-pore ceramic carrier substrate. In this respect, at least one layer which is conductive for lithium ions, which has an electrical conductivity of at least 10−5 Scm−1 and which is gas-impervious is formed on the surface facing the cathode. In this respect, the carrier substrate has greater mechanical strength and a larger layer thickness than the at least one layer.
Disclosed herein is a battery cell configured to have a structure in which an electrode assembly, including positive electrodes, negative electrodes, and separators disposed respectively between the positive electrodes and the negative electrodes, is mounted in a battery case, wherein the electrode assembly includes two or more electrodes or unit cells stacked in a height direction when viewed in a plan view, the battery case is provided with a receiving unit, in which electrode assembly is mounted, the electrode assembly is configured to have a quadrangular shape having side (a), side (b), side (c), and side (d) when viewed in a plan view, and inclined such that an interior angle between side (a) of each of the electrode plates or the unit cells, at which an electrode terminal is located, and side (b) adjacent to side (a) is less than 90 degrees, and the receiving unit of the battery case has an internal shape corresponding to a planer shape of the electrode assembly.
Provided is a method for manufacturing a sintered body for an electrolyte and an electrolyte for a fuel cell using the same. More particularly, the following disclosure relates to a method for preparing an electrolyte having a firm thin film layer by using a sintered body having controlled sintering characteristics, and application of the electrolyte to a solid oxide fuel cell. It is possible to control the sintering characteristics of a sintered body through a simple method, such as controlling the amounts of crude particles and nanoparticles. In addition, an electrode using the obtained sintered body having controlled sintering characteristics is effective for forming a firm thin film layer. Further, such an electrolyte having a firm thin film layer formed thereon inhibits combustion of fuel with oxygen when it is applied to a fuel cell, and thus shows significantly effective for improving the quality of a cell.
A fuel cell system includes: a reformer to generate a fuel gas from a raw material gas, reforming water, and air supplied to the reformer; an SOFC to generate electric power through a power-generating reaction by utilizing the fuel gas and air; a combustor to combust an anode off gas discharged from the SOFC; a hot module housing the reformer, the SOFC, and the combustor, which are covered with a heat insulating material; and a hydrodesulfurizer to remove a sulfur component from the raw material gas by hydrodesulfurization. The anode off gas is supplied to the combustor and the hydrodesulfurizer in a distributed manner. The hydrodesulfurizer performs the hydrodesulfurization of the raw material gas by utilizing the anode off gas as a hydrogen source and utilizing an exhaust gas discharged from the hot module as a heat source, the exhaust gas containing at least combustion heat from the combustor.
A hydrogen generator has: a reformer that produces hydrogen-containing gas from raw material gas through reforming; a temperature detector that detects the temperature of the reformer; a hydro-desulfurizer that removes sulfur from the raw material gas through hydrodesulfurization; a recycle flow passage through which recycle gas as a portion of the hydrogen-containing gas is supplied to the hydro-desulfurizer; a raw material gas flow detector that detects the flow rate of the raw material gas, the raw material gas flow detector located somewhere in a flow passage for the raw material gas upstream of a junction of the recycle gas and the raw material gas; and a controller that controls the flow rate of the recycle gas in accordance with the temperature of the reformer, the flow rate of the raw material gas, and the flow rate of the recycle gas.
A bipolar plate, which forms a first polar plate of a first base element of a fuel cell and a second polar plate of a second base element adjacent to the first base element of the fuel cell, includes two parallel plates. Each plate of the parallel plates includes at least one distribution channel formed in a thickness thereof, for distributing fuel or oxidant. The bipolar plate further includes a manifold to supply fuel and/or oxidant, with the manifold being structured to communicate with an interior portion of the bipolar plate through openings. One of the parallel plates includes a cut-out formed therein, so as to allow a gas located in the manifold to enter the at least one distribution channel via the openings and the cut-out.
A bipolar plate for fuel cells includes a flow plate having a first surface for the introduction of hydrogen fuel gas and water vapor and a second surface for the introduction of an oxygen containing gas, wherein at least a portion of the first and/or second surface comprises a nanostructured carbon material (NCM) coating deposited thereon, said coating having a thickness of 1 nm to 5 μm.
A polymer compound for use as a binder for a negative electrode of an electrical storage device is formed by condensing polyacrylic acid and a multifunctional amine represented by the following formula (1), in which Y represents a straight chain alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom, and R1 and R2 each independently represent one or more hydrogen atoms, methyl groups, ethyl groups, trifluoromethyl groups, or methoxy groups.
The present disclosure provides a positive electrode active material for nonaqueous electrolyte secondary batteries including: a lithium transition metal composite oxide represented by general formula: Lia(Ni1-xCrx)α(Mn1-yTiy)2-α-β-γ-δMgβAlγMδO4 in which 1.00≤a≤1.30, 0.020≤x≤0.200, 0.006≤y≤0.070, 0.450≤α≤0.550, 0≤β≤0.015, 0≤γ≤0.035, and 0≤δ≤0.010, and M represents at least one element selected from the group consisting of Na, K, Ca, Sr, Ba, Ga, Co, Zn, Si, Ge, Zr, Hf, Sn, Ta, Nb, P, Bi, Mo, and W.
Disclosed are a transition metal precursor for preparing a lithium composite transition metal oxide, a method for preparing the precursor, and a lithium composite transition metal oxide. The transition metal precursor includes a composite transition metal compound having a composition represented by Formula (1) and a Mn content of 60 to 85 mol %: NiaMbMn1-(a+b)(OH1-x)2 (1) where M is at least one selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and period II transition metals, 0.15≤a≤0.3, 0≤b≤0.1 and 0
A fastening apparatus for a battery terminal case includes a main body having open upper and side portions configured to hold a battery terminal therein, a side body coupled to the open side portion of the main body, and an upper cover, hingedly coupled to the side body, provided at the open upper portion of the main body. Hinge protrusions are formed on opposing sides of one of the side body and the upper cover. Hinge holes are formed on opposing sides of the other one of the side body and the upper cover. The hinge holes are configured to receive the hinge protrusions therein.
An energy storage apparatus including: a plurality of energy storage devices each including a pair of external terminals, wherein one of two adjacent energy storage devices among the plurality of energy storage devices includes a connecting portion having at least a convex part at one of the pair of external terminals, the other of the two adjacent energy storage devices includes a connecting portion having at least a concave part at the other of the pair of external terminals, and the convex part is fitted into the concave part.
An article is presented. The article includes a seal ring configured for use in an energy storage device, the seal ring comprising a first portion and a second portion that each include an alumina-based cermet, that comprises a sufficient amount of metal or metal alloy to be weldable, and the cermet comprises a ceramic material selected from a group consisting of silica, yttria, and ytterbia, and the seal ring further comprises a third region intervening between the first portion and the second portion that is sufficiently electrically insulative and of sufficient thickness to electrically isolate the first portion from the second portion.
Provided is an organic electroluminescent lighting device which can be seen that the entire surface is uniformly illuminated from the side of a transparent electrode substrate even when an auxiliary electrode or an auxiliary wiring is provided with respect to the transparent electrode substrate.In an organic electroluminescent lighting device including a pair of electrode layers including a translucent electrode layer provided on a translucent substrate, at least one organic layer interposed between the pair of electrode layers and including a light-emitting layer, and an auxiliary electrode provided on the translucent electrode layer such that the auxiliary electrode comes in contact with a portion of the translucent electrode layer, the auxiliary electrode includes conductive metal particles having a particle diameter of 0.1 to 2 μm, and is covered with an interlayer insulating coating film for suppressing the conduction with the organic layer.
An organic EL apparatus includes a substrate, an organic EL element that is disposed on the substrate, and a sealing layer that seals the organic light emission element by covering, and the sealing layer is a multilayer body which includes a first sealing layer, a buffer layer, and a second sealing layer respectively having different functions and being sequentially stacked from the organic EL element side. The second sealing layer is mainly made of silicon oxynitride, and includes an inner layer, an intermediate layer, and an outer layer being sequentially stacked on the organic EL element side. Stress of the intermediate layer is equal to or less than stress of the inner layer, and stress of the outer layer is greater than the stress of the inner layer.
An organic light-emitting diode display includes an organic light-emitting display device including a first electrode, an intermediate layer including an organic emission layer, and a second electrode; a first inorganic encapsulation layer on the second electrode; a second inorganic encapsulation layer on the first inorganic encapsulation layer; and an organic encapsulation layer on the second inorganic encapsulation layer. A refractive index of the first inorganic encapsulation layer is higher than a refractive index of the second inorganic encapsulation layer. The first inorganic encapsulation layer has an extinction coefficient of 0.02 to 0.07 and a refractive index of 2.1 to 2.3 at a blue wavelength.
Provided are a photocurable pressure-sensitive adhesive composition including an acrylic polymer, an epoxy resin, and a cationic photopolymerization initiator, an organic electronic device having an encapsulant including a photocured product of the composition using a curable pressure-sensitive adhesive film which is a film-state product including the composition, and a method for manufacturing an organic electronic device using the curable pressure-sensitive adhesive film. Particularly, due to the method including laminating a photocurable pressure-sensitive adhesive film including a curable pressure-sensitive adhesive layer including an acrylic polymer, an epoxy resin, and a cationic photopolymerization initiator to an top substrate, and radiating light to an entire surface of the curable pressure-sensitive adhesive layer to perform photocuring, and laminating the photocured curable pressure-sensitive adhesive layer to a bottom substrate on which an organic light emitting element is formed to cover an entire surface of the organic light emitting element, mechanical strength and a simple process caused by photocuring to the organic light emitting element without direct light irradiation may be achieved, and a lifespan of the element may be increased.
A display device includes a substrate, a display unit on the substrate, and an encapsulating unit configured to seal the display unit from external moisture or oxygen and including an organic layer and an inorganic layer. The inorganic layer includes a first layer, a second layer on the first layer, and one or more first particles between the first and second layers. A method of manufacturing a display device includes forming a display unit on a substrate and sealing the display unit from external moisture or oxygen by forming an encapsulating unit. The forming of the encapsulating unit includes forming an inorganic layer. The forming of the inorganic layer includes forming a first layer, forming one or more first particles on an upper surface of the first layer, and forming a second layer on the first layer and the first particles.
A highly reliable light-emitting module or light-emitting device is provided. A method for manufacturing a highly reliable light-emitting module is provided. The light-emitting module includes, between a first substrate and a second substrate, a first electrode provided over the first substrate, a second electrode provided over the first electrode with a layer containing a light-emitting organic compound interposed therebetween, and a sacrifice layer formed using a liquid material provided over the second electrode.
An organic light-emitting display apparatus includes: a substrate; a display unit on the substrate and including a display area and a non-display area outside of the display area; and a thin-film encapsulation layer that seals the display unit, wherein the non-display area includes a dam region located outside of the display area and a plurality of protrusions on at least a part of the display unit outside of the dam region.
To constitute a translucent electrode including a base layer having a surface in which surface roughness (Ra) is 2 or less and elastic modulus is 20 GPa or more, and an electrically conductive layer that is provided on the surface side of the base layer and that contains silver as the principal component.
Discussed is a white organic light emitting device for enhancing emission efficiency and panel efficiency. The white organic light emitting device can include a first emission part between a first electrode and a second electrode and configured to include a first emission layer (EML), a second emission part on the first emission part and configured to include a second EML, and a third emission part on the second emission part and configured to include a third EML. The first to third emission parts have an emission position of emitting layers (EPEL) structure in which the first to third emission parts have a maximum emission range in respective emission areas of the first to third EMLs.
Provided are a conductive polymer ink composition including a) a water-based dispersion including a conductive polymer, b) a conductivity enhancer, c) a solvent, and d) a fluorine-based surfactant and a surfactant having a hydrophile-lipophile balance (HLB) of 12 or above, and an organic solar cell including the same.
An organic electroluminescence device contains an anode and a cathode facing each other, and intervening therebetween at least two hole transporting layers and a light emitting layer sequentially, and one of the hole transporting layers contains a compound having a particular structure having a fluorene structure at the center thereof, and is not adjacent to the light emitting layer. The organic electroluminescence device has a hole transporting layer having an increased thickness, is capable of being controlled in the thickness of the optical film, and has an enhanced device capability.
An organic light-emitting device including a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the emission layer includes a first compound represented by the following Formula 1, and a second compound represented by one of the following Formulae 2-1 to 2-4:
A patterning method of a graphene, including a step of forming a graphene layer on a polymer substrate; and a step of forming a nanopattern in the graphene layer by hot embossing imprinting. The step of forming a nanopattern in the graphene layer by hot embossing imprinting includes contacting a hot mold, in which a nanopattern is formed, or contacting a roll-to-roll hot mold, in which a nanopattern is formed, to the graphene layer, followed by heating and pressing the graphene layer. In the step of forming a nanopattern in the graphene layer, the graphene layer is cleaved by a protrusion of the nanopattern formed on the hot mold or the hot roll-to-roll mold, and the cleaved graphene is present on each of a protrusion and a recessed portion of the nanopattern formed in the polymer substrate under the graphene later.
A substrate includes a base made of a metal material, a thermally conductive, light-reflective ceramic insulating layer, and a buffer layer formed between the base and the ceramic insulating layer and having a smaller linear expansion coefficient than the base.
Techniques are provided for forming a gallium nitride flip-chip light-emitting diode. In an aspect, a device is provided that includes a gallium nitride layer, a passivation layer, a set of first conductive layers, and a second conductive layer. The gallium nitride layer is formed on a substrate that includes a first plurality of recesses associated with a first structure and a second plurality of recesses associated with a second structure, where the first plurality of recesses and the second plurality of recesses are associated with a first conductive material. The set of first conductive layers is formed on the passivation layer and corresponds to the first conductive material. The second conductive layer is formed on the passivation layer and corresponds to a second conductive material.
A package substrate includes: an insulating substrate, a first and a second soldering pads spacedly disposed on a first surface of the insulating substrate, a first and a second electrodes spacedly disposed on an opposite second surface of the insulting substrate. The first and the second soldering pads are electrically connected to the first and the second electrodes respectively. Moreover, a first and a second grooves are defined on the first surface of the insulating substrate, the first and the second grooves are spaced from each other and disposed between the first and the second soldering pads. The invention further provides a LED flip chip package structure including the package substrate, a LED flip chip and fluorescent glue. The invention adds the grooves in the spacing between the soldering pads as a buffer space for melted solder flowing during reflow soldering process and therefore can relieve short-circuit phenomenon.
The invention relates to a signaling system comprising at least one light-emitting device (1) for showing a signal or warning to a viewer (99), wherein, in operational use, the light-emitting device (1) is configured for emitting radiation with a light distribution forming a solid angle in space, wherein a center line of the solid angle is defined as an optical axis (Z) of the light-emitting device (1). The light-emitting device (1) comprises a transparent housing (3), a reflector (5) and a light-emitting part (7) arranged within the housing (3), wherein the reflector (5) and the light-emitting part (7) are configured for generating the radiation with said light distribution. The signaling system further comprises blocking means (10) are arranged substantially at one side of the light-emitting device (1). The blocking means (10) are configured for individually blocking, in operational use, at least part of the radiation emitted by the light-emitting device (1) in a direction substantially parallel to the optical axis (Z), wherein the one side is defined with respect to a fictitious plane through the optical axis (Z). The invention further relates to various applications of such signaling system. Despite the lower luminance of the light-emitting device, the invention provides for a higher-contrast ratio in case of a low-angled sun with respect to the optical axis (Z).
An LED light-emission device includes a substrate, an LED chip, a phosphor-containing resin containing a phosphor and covering the LED chip, and a diffusing agent-containing resin containing a diffusing agent that diffuses light emitted from the phosphor-containing resin and sealing the phosphor-containing resin. The LED chip, the phosphor-containing resin, and the diffusing agent-containing resin are placed on a same flat face of the substrate.
A light emitting heterostructure including a partially relaxed semiconductor layer is provided. The partially relaxed semiconductor layer can be included as a sublayer of a contact semiconductor layer of the light emitting heterostructure. A dislocation blocking structure also can be included adjacent to the partially relaxed semiconductor layer.
A bi-polar device is provided, along with methods of making the same. The bi-polar device can include a semiconductor substrate doped with a first dopant, a semiconductor layer on the first surface of the semiconductor substrate, and a Schottky barrier layer on the semiconductor layer. The method of forming a bi-polar device can include: forming a semiconductor layer on a first surface of a semiconductor substrate, where the semiconductor substrate comprises a first dopant and where the semiconductor layer comprises a second dopant that has an opposite polarity than the first dopant; and forming a Schottky barrier layer on a first portion of the semiconductor layer while leaving a second portion of the semiconductor layer exposed.
Disclosed are a solar cell apparatus and a method of fabricating the same. The solar cell apparatus includes a substrate, a first electrode layer on the substrate, a plurality of light absorbing columns on the first electrode layer, and a second electrode layer on the light absorbing columns.
Patterning planar photo-absorbing materials into arrays of nanowires is demonstrated as a method for increasing the total photon absorption in a given thickness of absorbing material. Such a method can provide faster, cheaper, and more efficient photo-detectors and solar cells. A thin nanowire can absorb many more photons than expected from the size of the nanowire. The reason for this effect is that such nanowires support cylindrical particle resonances which can collect photons from an area larger than the physical cross-section of the wire. These resonances are sometimes referred to as Mie resonances or Leaky Mode Resonances (LMRs). The nanowires can have various cross section shapes, such as square, circle, rectangle, triangle, etc.
A solar cell module according to the embodiment includes a back electrode layer formed on a top surface of a support substrate and including a first groove; a light absorbing layer formed on the back electrode layer and including a third groove; a front electrode layer formed on the light absorbing layer and including the third groove; and a wavelength conversion material formed in at least one of the first and third grooves.
A method for producing at least one electric contact by electrochemical deposition of an electrically conducting material on a face of a photovoltaic cell, the contact being formed by first and second lines connected to one another, the second line presenting a larger width than the width of the first line, the method including, before electrochemical deposition, a formation step of at least one area presenting a lower electric conductivity than the electric conductivity of the electrically conducting material, on a part of the face of the photovoltaic cell designed to be electrically connected with the second line, at the level of its intersection with the first line.
A semiconductor structure is disclosed. The semiconductor structure includes a source trench in a drift region, the source trench having a source trench dielectric liner and a source trench conductive filler surrounded by the source trench dielectric liner, a source region in a body region over the drift region. The semiconductor structure also includes a patterned source trench dielectric cap forming an insulated portion and an exposed portion of the source trench conductive filler, and a source contact layer coupling the source region to the exposed portion of the source trench conductive filler, the insulated portion of the source trench conductive filler increasing resistance between the source contact layer and the source trench conductive filler under the patterned source trench dielectric cap. The source trench is a serpentine source trench having a plurality of parallel portions connected by a plurality of curved portions.
A method of producing a semiconductor device includes forming an insulating film on a substrate on which a semiconductor layer is formed; removing a part of the insulating film by etching to form an opening in the insulating film; supplying steam with a temperature greater than or equal to 200° C. and less than or equal to 600° C. to the opening formed in the insulating film; after supplying the steam, applying a solution including a silicon compound to a side surface of the insulating film defining the opening; and forming a hydrophobic film on the side surface of the insulating film defining the opening by polymerizing the silicon compound.
There is provided a semiconductor device to enhance operating characteristics by reducing parasitic capacitance between a gate electrode and other nodes. The semiconductor device includes: a substrate including an active region, and a field region directly adjacent to the active region; a first fin-type pattern protruding from the substrate in the active region; a first gate electrode disposed on the substrate, intersecting with the first fin-type pattern and including a first portion and a second portion, the first portion intersecting with the first fin-type pattern; a second gate electrode disposed on the substrate, intersecting with the first fin-type pattern and including a third portion and a fourth portion, the fourth portion facing the second portion, and the third portion intersecting with the first fin-type pattern and facing the first portion; a first interlayer insulating structure disposed between the first portion and the third portion, being on the substrate, and having a first dielectric constant; and a second interlayer insulating structure disposed between the second portion and the fourth portion, being on the substrate, and having a second dielectric constant which is different from the first dielectric constant.
An augmented capacitor structure includes a substrate and a first capacitor plate of a first conductive layer on the substrate. The augmented capacitor structure also includes an insulator layer on a surface of the first capacitor plate facing away from the substrate and a second capacitor plate. The second capacitor plate includes a second conductive layer on the insulator layer, supported by the first capacitor plate as a first capacitor. A second capacitor electrically is coupled in series with the first capacitor. The first capacitor plate is shared by the first capacitor and the second capacitor as a shared first capacitor plate. An extended first capacitor plate includes a first dummy portion of a third conductive layer and a first dummy via bar extending along the surface of the shared first capacitor plate. The first dummy portion extends along and is supported by the first dummy via bar.
A display device includes a first substrate including a first area and a second area, light emitting elements arranged in the first area, connecting pads arranged in the second area, a thin film encapsulation layer arranged on the light emitting elements, a second substrate including a third area and a fourth area, sensing pads arranged in the fourth area, a touch sensor layer including sensing electrodes arranged in the third area and sensing lines connected between the sensing electrodes and the sensing pads, an interlayer arranged between the thin film encapsulation layer and the touch sensor layer, and a conductive member connected between the connecting pads and the sensing pads.
A device includes a semiconductor substrate, a plurality of micro-lenses disposed on the substrate, each micro-lens being configured to direct light radiation to a layer beneath the plurality of micro-lenses. The device further includes a transparent layer positioned between the plurality of micro-lenses and the substrate, the transparent layer comprising a structure that is configured to block light radiation that is traveling towards a region between adjacent micro-lenses, wherein the structure and the transparent material are coplanar at respective top surfaces and bottom surfaces thereof.
An image sensor circuit, comprises: a photo sensing circuit including a photo sensitive device for sensing a light signal to generate a photo sensing signal at a photo sensing output node; a charge storage device, coupled to an integration node; an integration switch coupled between the photo sensing output node and the integration node, operating according to an integration control signal; and a reset circuit coupled between a voltage supply and the integration node, operating according to a reset control signal and a read control signal, wherein the integration node includes an integration voltage. In a reset time period, the integration switch is conductive, and the reset circuit generates a reset signal on the integration node to bias the photo sensitive device through the integration switch to an active state and to charge the charge storage device such that the integration voltage is determined to be at a reset level.
A pixel is formed by two or more photodiodes and at least one transfer gate. The transfer gate is configured to transfer charge from each of the photodiodes to a common sense node, such that charge from the photodiodes is combined at the common sense node.
A solid-state imaging device includes a plurality of pixels, a reference signal supply unit configured to output a reference signal, and a comparison unit configured to output a signal depending on the reference signal and a signal from the pixel. The comparison unit includes a comparator circuit including an input terminal and an output terminal, a first switch configured to connect the input terminal and the output terminal of the comparator circuit, a clamp capacitor including a first terminal connected to the input terminal of the comparator circuit, a second switch connected to a second terminal of the clamp capacitor, and configured to select one of the signal from the pixel and the reference signal and to input the selected signal to the second terminal, and a clipping circuit arranged in an electrical path through which the reference signal is input to the comparator circuit.
A semiconductor structure and a manufacturing method thereof are provided. The semiconductor structure includes a semiconductor substrate, a non-volatile memory cell, and a gate stack. The non-volatile memory cell is formed in the semiconductor substrate, and a top surface of the non-volatile memory cell is coplanar with or below a top surface of the semiconductor substrate. The gate stack is formed on the semiconductor substrate.
A semiconductor memory device includes a semiconductor substrate, a first insulating film provided on the semiconductor substrate, a first conductive film provided on a first region of the first insulating film, a second conductive film provided on a second region of the first insulating film, a first stacked body provided on the first conductive film, a second stacked body provided on the second conductive film, a first semiconductor pillar, and two conductive pillars. In the first stacked body, a second insulating film and an electrode film are stacked alternately. In the second stacked body, a third insulating film and a first film are stacked alternately. The two conductive pillars extend in the first direction through the second stacked body, are separated from the second conductive film, sandwich the second conductive film, and are connected at a bottom ends of the second conductive pillars to the semiconductor substrate.
A method for forming an integrated circuit includes forming a deep n-well (DNW) in a substrate, and forming a PMOS transistor in the DNW. The method also includes forming an NMOS transistor in the substrate and outside the DNW, and forming a reverse-biased diode. The method further includes forming an electrical path between a drain of the PMOS transistor and a gate structure of the NMOS transistor. The dissipation device is also connected to the electrical path.
In accordance with various embodiments, the disclosed subject matter provides a display device and a related fabricating method. In some embodiments, the display device comprises: a substrate and a plurality of display units on the substrate, wherein each of the plurality of display units comprises: a first color sub-pixel, comprising a first quantum dot material and a first light source, wherein the first color sub-pixel is configured to provide a first color light by stimulating the first quantum dot material with the first light source; and a second color sub-pixel, comprising a second quantum dot material and a second light source, wherein the second color sub-pixel is configured to provide a second color light by stimulating the second quantum dot material with the second light source.
A semiconductor package comprising: a substrate including an external connection terminal and a cavity; a first semiconductor chip disposed in the cavity, the first semiconductor chip including a first pad and a second pad different from the first pad, the first pad and the second pad being disposed on a first surface of the first semiconductor chip; a metal line disposed on the substrate and the first semiconductor chip and electrically connecting the first pad of the first semiconductor chip with the external connection terminal of the substrate; a second semiconductor chip disposed on the first semiconductor chip, the second semiconductor chip including a third pad disposed on a second surface of the second semiconductor chip facing the first semiconductor chip; and a connection terminal electrically connecting the second pad of the first semiconductor chip with the third pad of the second semiconductor chip, the connection terminal being not electrically connected to the metal line.
A semiconductor apparatus includes a first semiconductor die and a second semiconductor die stacked onto the first semiconductor die in a horizontally shifted manner. The first semiconductor die includes a first chip selection terminal and a first lower terminal electrically connected to the first chip selection terminal. The second semiconductor die includes a second chip selection terminal electrically connected to a first upper terminal of the first semiconductor die via a second lower terminal of the second semiconductor die. The first upper terminal which is electrically connected to the second chip selection terminal is not electrically connected to the first lower terminal which is electrically connected to the first chip selection terminal.
According to various embodiments an electronic component includes: at least one electrically conductive contact region; a contact pad including a self-segregating composition disposed over the at least one electrically conductive contact region; a segregation suppression structure disposed between the contact pad and the at least one electrically conductive contact region, wherein the segregation suppression structure includes more nucleation inducing topography features than the at least one electrically conductive contact region for perturbing a chemical segregation of the self-segregating composition by crystallographic interfaces of the contact pad defined by the nucleation inducing topography features.
The object of the present invention is to provide a black marker composition capable of forming non-metal marker which sufficiently ensures the adhering strength and the contrast against the foundation; the electronic component comprising the marker made of said black marker composition, and further the communication device comprising said electronic component.The marker composition according to the present invention comprises a borosilicate glass, and a black oxide including Cr, Mn and one or more elements selected from the group consisting of Fe, Ni, Cu and Co.
A thermally conductive sheet, which contains: a binder; carbon fibers; and an inorganic filler, wherein the thermally conductive sheet is to be sandwiched between a heat source and a heat dissipation member of a semiconductor device, wherein the carbon fibers have an average fiber length of 50 μm to 250 μm, wherein thermal resistance of the thermally conductive sheet is less than 0.17 K·cm2/W, as measured in accordance with ASTM-D5470 with a load of 7.5 kgf/cm2, and wherein the thermally conductive sheet has an average thickness of 500 μm or less.
A substrate includes first and second semiconductor layers doped with opposite conductivity type in contact with each other at a PN junction to form a junction diode. At least one through silicon via structure, formed by a conductive region surrounded laterally by an insulating layer, extends completely through the first semiconductor layer and partially through the second semiconductor layer with a back end embedded in, and in physical and electrical contact with, the second semiconductor layer. A first electrical connection is made to the first through silicon via structure and a second electrical connection is made to the first semiconductor layer. A testing current is applied to and sensed at the first and second electrical connections in order to detect a defect in the at least one through silicon via structure.
A method for producing a finFET having a fin with thinned sidewalls on a lower portion above a shallow trench isolation (STI) regions is provided. Embodiments include forming a fin surrounded by STI regions on a substrate; recessing the STI regions, revealing an upper portion of the fin; forming a spacer over side and upper surfaces of the upper portion of the fin; recessing the STI regions, exposing a lower portion of the fin; and thinning sidewalls of the lower portion of the fin.
Techniques herein provide a chamber and substrate cleaning solution for etching and removing byproducts between separate etching steps. Such techniques include using a cleaning step based on fluorine chemistry, which is executed in between separate etch steps or divided etch steps. Such a technique can be executed in situ for improved efficiency. Other benefits include increasing etching depth/aspect ratios, and preventing post-etching defects including physical contact with neighboring gates, etc. Techniques herein are especially beneficial when applied to relatively small feature openings.
A catalyst adsorbed on a surface of a substrate is bound to the substrate without leaving residues within a recess of the substrate. A catalyst layer forming method includes forming a catalyst layer 22 by supplying a catalyst solution 32 onto a substrate 2 having a recess 2a to adsorb the catalyst 22A onto a surface of the substrate and onto an inner surface of the recess; rinsing the surface of the substrate 2 and an inside of the recess 2a by supplying a rinse liquid; drying the surface of the substrate 2 and the inside of the recess 2a. Further, by supplying a binder solution 34 containing a binder 22B onto the substrate 2, the catalyst 22A on the surface of the substrate 2 is bound to the substrate 2 by the binder 22B.
A method for forming an ion flow barrier between conductors includes forming a barrier material through a via in an interlevel dielectric layer and onto a first metal layer and recessing the barrier material to form a thickness of the barrier material on the first metal layer in the via, the thickness forming an ion flow barrier. A second metal layer is deposited in the via over the ion flow barrier such that, during operation, the ion flow barrier reduces ion flow between the first metal layer and the second metal layer while maintaining low resistance.
According to the present invention, there is provided a semiconductor wafer protective film including a substrate layer (A) and an adhesive layer (C) formed on the substrate layer (A), in which the substrate layer (A) includes polymer, and a solubility parameter of the polymer determined by a Van Krevelen method is equal to or greater than 9.
A temporary bonding laminate for use in the manufacture of semiconductor devices and a method for manufacturing semiconductor devices are provided. A member to be processed (a semiconductor wafer or the like) can be temporarily supported securely and readily during a mechanical or chemical process of the member, and then the processed member can be readily released from the temporary support without damaging the processed member even after a high temperature process. The laminate includes: (A) a release layer and (B) an adhesive layer. The release layer contains (a1) a compound being liquid at 25° C. and having a 5% mass reduction temperature of 250° C. or more when measured in a nitrogen gas stream under heating conditions of a constant heating rate of 20° C./min; and (a2) a binder having a 5% mass reduction temperature of 250° C. or more when measured under the same conditions.
A centering fixture for centering a wafer on a chuck is provided. The centering fixture includes a body including an upper surface, a lower surface, an inner periphery and an outer periphery. A chuck seat is positioned in a lower portion of the inner periphery and configured to mate the body with the chuck. A wafer seat is positioned in an upper portion of the inner periphery above the chuck seat, the wafer seat configured to receive and center the wafer on the chuck. The centering fixture ensures centering of the wafer relative to the chuck for automated handling system calibration. The wafer, body, chuck, chuck seat and wafer seat can be circular.
The lower lid includes a bottom plate that supports the substrate storing container and a lower lid peripheral wall that extends upwards from a periphery of the bottom plate. The sleeve member has a tubular shape having an axial center that extends in the vertical direction. The upper lid has a top plate and an upper lid peripheral wall that extends downwards. The lower lid includes device positioning portions. The device positioning portions can engage the positioned portion of the lifting device that lifts, from the lower lid, the substrate storing container which is supported by the lower lid in a state of the upper lid being removed therefrom.
A drying holder holds a solar cell in an upright state, and is used in an electrode drying process. The drying holder is provided with a base part on which the solar cell is placed, and a support part that is disposed on the base part, and forms a support slot that is capable of accommodating the solar cell. Vents are formed on the base part and/or the support part.
A space needed to transfer a substrate container is decreased. A substrate processing apparatus includes a locating part where a substrate container accommodating a substrate is located; a driving unit configured to drive the locating part vertically; a transfer robot configured to transfer the substrate container; and a controller configured to control the driving unit and the transfer robot to move the locating part downward after the transfer robot moves to under the locating part to transfer the substrate container from the locating part to the transfer robot.
Disclosed is a teaching method of setting a location of a robot that transports a substrate onto a rotatable support plate that supports the substrate, the teaching method including setting the location of the robot by using decentering values that are acquired by performing an operation of loading the substrate on the support plate with the robot, rotating the support plate by a preset angle, unloading the substrate from the support plate with the robot, and detecting a decentering value of the substrate positioned on a hand of the robot a plurality of times.
There is provided a method of manufacturing a stack package. The method includes vertically stacking core dies on a base die wafer to provide a stack structure, forming partition walls on the base die wafer to surround the stack structure, and forming an underfill material layer that includes under-filling portions filling gaps between the core dies, and filling fillet portions covering side surfaces of the core dies. The fillet portions are formed to have a width confined by the partition walls. The partition walls are removed, and a mold layer is formed to cover the fillet portions. Related stack packages are also provided.
Methods for forming semiconductor devices, such as FinFET devices, are provided. An epitaxial film is formed over a semiconductor fin, and the epitaxial film includes a top surface having two facets and a bottom surface including two facets. A cap layer is deposited on the top surface, and portions of the epitaxial film in a lateral direction are removed by an isotropic plasma etch process. The isotropic plasma etch process may be performed at a pressure ranging from about 5 mTorr to about 200 mTorr in order to maximize the amount of radicals while minimizing the amount of ions in the plasma. Having a smaller lateral dimension prevents the epitaxial film from merging with an adjacent epitaxial film and creates a gap between the epitaxial film and the adjacent epitaxial film.
Methods, systems, and computer programs are presented for controlling gas flow in a semiconductor manufacturing chamber. The method includes flowing a reactant gas thorough an inner feed and a tuning gas through an outer feed surrounding the inner feed, such that the gases do not mix until both are introduced in the chamber. Further, the flow of the reactant gas is convective, and the flow of the tuning gas is directed at an angle from the direction of the reactant gas, providing a delivery of the tuning gas in closer proximity to the RF power before further mixing with the reactant gas. Radio frequency power is provided to the electrode to ignite a plasma using the reactant and tuning gases.
A method of fabricating fin structure is provided. A patterned catalyst layer and a patterned passivation layer extending along a first direction are formed on a substrate. The patterned passivation layer is located on the patterned catalyst layer. A carbon layer is formed on at least one side of the patterned catalyst layer and includes hollow carbon tubes arranged along the first direction. Each hollow carbon tube extends along a second direction. A removal process is performed to remove the top and a portion of the bottom of each hollow carbon tube closest to the substrate, so that remnants are left and serve as a mask layer. Two adjacent remnants form a stripe pattern extending along the second direction. The patterned passivation layer and the patterned catalyst layer are removed. The pattern of the mask layer is transferred to the substrate to form fin structures. The mask layer is removed.
Described herein is a technique capable of improving the uniformity of device characteristics. A method of manufacturing a semiconductor device may include: (a) accommodating in a process chamber a substrate having an organic film thereon; (b) supplying a metal-containing gas to the substrate; (c) supplying a first oxygen-containing gas and a dilute gas to the substrate, the dilute gas containing at least one of a second oxygen-containing gas and an inert gas; (d) performing a cycle a predetermined number of time, the cycle including (b) and (c), wherein a flow rate of the first oxygen-containing gas is equal to or greater than a flow rate of the dilute gas in one of the cycle performed the predetermined number of time.
Laser lift-off methods are described in which optical flatness is provided on the back side of a temporary substrate using either an optical layer or optical liquid. A laser is directed through the optical layer or optical liquid and a back side of the temporary substrate to decompose a portion of a process layer supported on a front side of the temporary substrate, followed by separation of the process layer and the temporary substrate.
There is provided a method of forming a film on a surface to be processed of a workpiece, the method including: accommodating the workpiece with a single-crystallized substance formed on the surface to be processed, into a processing chamber; supplying a crystallization suppressing process gas into the processing chamber such that a crystallization of the single-crystallized substance formed on the surface to be processed is suppressed; and supplying a source gas into the processing chamber to form an amorphous film on the surface to be processed of the workpiece.
A silicon carbide semiconductor substrate includes a first main surface and a second main surface opposite to the first main surface. The first main surface has a maximum diameter of more than 100 mm, and the silicon carbide semiconductor substrate has a thickness of not more than 700 μm. A dislocation density is not more than 500/mm2 at an arbitrary region having an area of 1 mm2 in a region within 5 mm from an outer circumferential end portion of the first main surface toward a center of the first main surface. Accordingly, there is provided a silicon carbide semiconductor substrate allowing for suppression of generation of cracks.
In one embodiment, a semiconductor manufacturing apparatus includes a wafer setting module on which a wafer is to be set. The apparatus further includes a cover module configured to cover a portion of the wafer set on the wafer setting module. The apparatus further includes a position controller configured to detect a position of the wafer set on the wafer setting module and control a position of the cover module based on the detected position of the wafer.
This disclosure relates to a plasma processing system for controlling plasma density across a substrate and maintaining a tight ion energy distribution within the plasma. In one embodiment, this may include using a dual plasma chamber system including a non-ambipolar plasma chamber and a DC plasma chamber adjacent to the non-ambipolar system. The DC plasma chamber provide power to generate the plasma by rotating the incoming power between four inputs from a VHF power source. In one instance, the power to each of the four inputs are at least 90 degrees out of phase from each other.
A plasma sputtering apparatus according to one embodiment includes a chamber and a reservoir in fluidic communication with the chamber. The reservoir stores a vapor source therein, and is configured to release vapor at a predetermined rate. The vapor released by the reservoir is effective to diminish an etch rate of a first magnetic material, the vapor having a smaller effect on an etch rate of a second magnetic material that is different than the first magnetic material. The apparatus also includes a mount for a substrate and a plasma source.
A plasma processing system is provided that includes a chamber having a lower electrode coupled to a substrate support and an upper electrode coupled to ground. The plasma processing system having a plasma processing volume that is defined between the upper electrode and the lower electrode. A direct current (DC) to direct current (DC) converter is provided to receive at an input a DC voltage input and supply at an output an amplified DC voltage signal that includes a radio frequency (RF) component. The DC voltage input follows a pulsing pattern that is digitally programmable. The output of the DC to DC convertor is connected to the lower electrode of the chamber. A controller is interfaced with the DC to DC converter to set the pulsing pattern. In one example, the DC to DC converter uses one of a bipolar or non-bipolar DC voltage supply and a RF generator is driven by a DC voltage supply. The RF generator is configured to produce a frequency ripple that defines the RF component.
A technique capable of improving the ability to observe a specimen using an electron beam in an energy region which has not been conventionally given attention is provided. This specimen observation method comprises: irradiating the specimen with an electron beam; detecting electrons to be observed which have been generated and have obtained information on the specimen by the electron beam irradiation; and generating an image of the specimen from the detected electrons to be observed. The electron beam irradiation comprises irradiating the specimen with the electron beam with a landing energy set in a transition region between a secondary emission electron region in which secondary emission electrons are detected and a mirror electron region in which mirror electrons are detected, thereby causing the secondary emission electrons and the mirror electrons to be mixed as the electrons to be observed. The detection of the electrons to be observed comprises performing the detection in a state where the secondary emission electrons and the mirror electrons are mixed. Observation and inspection can be quickly carried out for a fine foreign material and pattern of 100 nm or less.
The invention relates to a device for correlative scanning transmission electron microscopy (STEM) and light microscopy. In order to create a device for correlative microscopy which enables an improved combination of light microscopy and STEM methods, a STEM detector (7) according to the invention is combined with a photo-optical lens (8). This detection device combines the efficient detection by means of STEM microscopy of materials having a high atomic number, for example specific nanoparticle markers in a specimen in a liquid, such as a cell, with simultaneous light microscopy.
An electron energy loss spectrometer is described having a direct detection sensor, a high speed shutter and a sensor processor wherein the sensor processor combines images from individual sensor read-outs and converts a two dimensional image from said sensor into a one dimensional spectrum and wherein the one dimensional spectrum is output to a computer and operation of the high speed shutter is integrated with timing of imaging the sensor. The shutter is controlled to allow reduction in exposure of images corresponding to the individual sensor readouts. A plurality of images are exposed by imaging less than the full possible exposure and wherein the plurality of images are combined to form a composite image. The plurality of images can be comprised of images created by exposing the sensor for different exposure times.
Disclosed herein are a high-voltage generator for an x-ray source, an x-ray gun, an electron beam apparatus, a rotary vacuum seal, a target assembly for an x-ray source, a rotary x-ray emission target, and an x-ray source. These various aspects may separately and/or together enable the construction of an x-ray source which can operate at energies of up to 500 kV and beyond, which is suitable for use in commercial and research x-ray applications such as computerised tomography. In particular, the high-voltage generator includes a shield electrode electrically connected intermediate of a first voltage multiplier and a second voltage multiplier. The electron beam apparatus includes control photodetectors and photo emitters having a transparent conductive shield arranged therebetween. The rotary vacuum seal includes a pumpable chamber at a position intermediate between high-pressure and low-pressure ends of a bore for a rotating shaft. The rotary target assembly is configured such that when a torque between a bearing housing and a vacuum housing exceeds a predetermined torque, the bearing housing rotates relative to the vacuum housing. The rotary x-ray emission target has a plurality of target plates supported on a hub, the plates being arranged on the hub to provide an annular target region about an axis rotation of the hub. The x-ray gun is provided with a shield electrode maintained at a potential difference relative to the x-ray target different to the electron beam emission cathode.
A circuit interrupter having a first contact positioned on a moveable contact arm that is moveable into and out of physical contact with a stationary contact. An arc horn shield positioned on or affixed to an escapement that is coupled to the moveable contact arm, the arc horn shield including a substantially U-shaped tab that is provided as a protrusion with an arc receiving surface such that when the moveable contact is moved into the vicinity of the protrusion, any arc that may be formed between the contacts is passed from the moveable contact to the arc receiving surface to minimize damage to the moveable contact and extinguish the arc.
Methods, systems, and apparatus for circuit breakers with integrated safety, control, monitoring, and protection features. In one aspect, a circuit breaker includes an input and an output, a switch coupled between the input and output, a communications device configured to communicate on a data communications network, and a control system coupled to the switch and the communications device, wherein the control system is configured to perform operations including opening the switch as a consequence of detecting an overcurrent condition in a circuit downstream from the circuit breaker, opening and closing the switch based on one or more instructions received by the communications device from the data communications network, and monitoring the power consumption of the circuit downstream from the circuit breaker.
A layered perovskite structure comprising a substrate having an upper surface and a lower surface; and a layer of a perovskite film on the upper surface. A passivating layer may be applied to the upper surface of the substrate to which the perovskite film is attached. The passivating layer comprises at least one a chalcogenide-containing species with the general chemical formula (E3E4)N(E1E2)N′C═X where any one of E1, E2, E3 and E4 is independently selected from C1-C15 organic substituents comprising from 0 to 15 heteroatoms or hydrogen, and X is S, Se or Te, thiourea, thioacetamide, selenoacetamide, selenourea, H2S, H2Se, H2Te, or LXH wherein L is a Cn organic substituent comprising heteroatoms and X═S, Se, or Te. The substrate comprises PEDOT:PSS, and may further comprise a layered glass/ITO/PEDOT:PSS structure. A passivating layer is applied to the PEDOT:PSS layer, and a top electrode may be applied over the perovskite film.
A MEMs actuator device and method of forming includes arrays of actuator elements. Each actuator element has a moveable top plate and a bottom plate. The top plate includes a central membrane member and a cantilever spring for movement of the central membrane member. The bottom plate consists of two RF signal lines extending under the central membrane member. A MEMs electrostatic actuator device includes a CMOS wafer, a MEMs wafer, and a ball bond assembly. Interconnections are made from a ball bond to an associated through-silicon-via (TSV) that extends through the MEMS wafer. A RF signal path includes a ball bond electrically connected through a TSV and to a horizontal feed bar and from the first horizontal feed bar vertically into each column of the array. A metal bond ring extends between the CMOS wafer and the MEMS wafer. An RF grounding loop is completed from a ground shield overlying the array to the metal bond ring, a TSV and to a ball bond.
A dielectric ceramic composition has good characteristics even under the high electric field intensity, and particularly good IR characteristic and the high temperature accelerated lifetime. The dielectric ceramic composition has a main component having a perovskite type compound shown by a compositional formula (Ba1-x-ySrxCay)m(Ti1-zZrz)O3, a first sub component having oxides of a rare earth element R, a second sub component as a sintering agent, wherein the dielectric particles has dielectric particles having high diffusion rate of the rare earth element, preferably of a complete solid solution particle, and when a concentration of Ti atom in the diffusion phase is 100 atom %, then an average concentration of the rare earth element R in the diffusion phase is 5 atom % or more, and an average concentration of Zr in the diffusion phase is 10 atom % or more.
A wireless power bridge that allows magnetic transmission of energy across a solid barrier such as a wall. A circuit is described for controlling the operation.
Integrated circuits and coupled inductors with isotropic magnetic cores, and methods for fabricating integrated circuits and coupled inductors with isotropic magnetic cores are provided. In an embodiment, a coupled inductor includes a first inductor coil arranged around a coil center and a second inductor coil arranged around the coil center. The second inductor coil is interleaved with the first inductor coil, and the first and second inductor coils form an interleaved inductor coil. The coupled inductor further includes an isotropic magnetic core surrounding a portion of the interleaved inductor coil and passing through the coil center.
A transmission line impedance transformer including at least two different dielectric media having different dielectric properties, each of the dielectric media being configured to taper in thickness along the length of the impedance transformer in an inverse relationship with respect to each other so as to form a combined dielectric medium having an effective dielectric property that is graded along the transmission path. The two or more dielectric media may be disposed between two conductors to provide an impedance transformer in which a characteristic impedance of the transmission line varies along its length in response to the gradation of the effective dielectric property of the combined dielectric medium.
Disclosed herein is a method comprising disposing a first particle in a reactor; the first particle being a magnetic particle or a particle that can be influenced by a magnetic field, an electric field or a combination of an electrical field and a magnetic field; fluidizing the first particle in the reactor; applying a uniform magnetic field, a uniform electrical field or a combination of a uniform magnetic field and a uniform electrical field to the reactor; elevating the temperature of the reactor; and fusing the first particles to form a monolithic solid.
A shunt resistor includes a resistive body and a pair of electrodes each bonded to the resistive body. The resistive body has an obverse surface and a reverse surface that face in mutually opposite directions. The two electrodes are separate from each other in a first direction perpendicular to the thickness direction of the resistive body. The resistive body has two ends separate from each other in the first direction. The obverse surface of the resistive body includes a pair of intentionally curved portions that are located at the two ends of the resistive body.
An electric wire and a shielding member configured to electrically shield the electric wire by enclosing an outer circumference thereof. A core wire of the electric wire has a single-core portion which is formed by applying pressure to a portion of a conductor obtained by twisting a plurality of strands together to reduce their cross section. This causes the strands to be brought into intimate contact with each other and form a single body, and a stranded wire portion in which the strands remain in a twisted-together state with no pressure having been applied thereto. The shielding member has a first shielding portion enclosing a portion of the electric wire where the core wire constitutes the single-core portion, and a second shielding portion enclosing a portion of the electric wire where the core wire constitutes the stranded wire portion. The second shielding portion has higher flexibility than the first shielding portion.
A method for manufacturing a collimator module and/or a collimator bridge is disclosed, as well as a collimator module, a collimator bridge, a collimator and a tomography device. A collimator module for a radiation detector includes a plurality of collimator layers. These collimator layers each have a flat lattice structure. In an embodiment, a first collimator layer has a holder structure and the collimator layers are aligned relative to one another by the holder structure on a first holder tool. With such a holder structure it is possible to glue the aligned collimator layers to one another such that the glued collimator layers form the collimator module with absorber walls disposed in a lattice shape. In such cases, the collimator layers can be aligned to one another in an especially simple and yet precise manner. Through this the actual lattice shape corresponds especially accurately to a prespecified lattice shape.
A passive safety system for a nuclear power plant (100) cools the plant after shutdown, even when primary water circulation is disabled. The system comprises a source of compressed gas (112, 805) which can be the system's only source of operating energy, a source of external cooling water (106, 500), and interconnection components. If the reactor overheats, the gas is used to force the cooling water into the reactor's core. The gas can be taken from a highly compressed source and decompressed to a lower pressure suitable for forcing the water from the source, in which case the water can first be used to supply heat to the expanding gas to prevent it from freezing its environment. The system can be located underground or can be portable, e.g., carried on railroad cars or other wheeled conveyances. The system can be located above ground, or in a covered trench (705).
A one time programming (OTP) apparatus unit cell includes magnetic tunnel junctions (MTJs) with reversed connections for placing the MTJ in an anti-parallel resistance state during programming. Increased MTJ resistance in its anti-parallel resistance state causes a higher programming voltage which reduces programming time and programming current.
A non-volatile memory device includes a memory array having memory cells arranged in wordlines and receiving a supply voltage. A row decoder includes an input and pre-decoding module, which is configured to receive address signals and generate pre-decoded address signals at low voltage, in the range of the supply voltage. A driving module is configured to generate biasing signals for biasing the wordlines of the memory array starting from decoded address signals, which are a function of the pre-decoded address signals, at high voltage and in the range of a boosted voltage higher than the supply voltage. A processing module is configured to receive the pre-decoded address signals and to jointly execute an operation of logic combination and an operation of voltage boosting of the pre-decoded address signals for generation of the decoded address signals.
A data storage device includes a nonvolatile memory device including a reference memory region and a normal memory region, and suitable for determining whether to perform a refresh operation, based on the reference memory region; and a controller suitable for determining a first memory region in the normal memory region based on wear leveling operation data, and controlling the nonvolatile memory device to perform the refresh operation for a second memory region excluding the first memory region in the normal memory region.
An integrated circuit can include multiple SRAM cells, each including at least two pull-up transistors, at least two pull-down transistors, and at least two pass-gate transistors, each of the transistors having a gate; at least one of the pull-up transistors, the pull-down transistors, or the pass-gate transistors having a screening region a distance below the gate and separated from the gate by a semiconductor layer, the screening region having a concentration of screening region dopants, the concentration of screening region dopants being higher than a concentration of dopants in the semiconductor layer, the screening region providing an enhanced body coefficient for the pull-down transistors and the pass-gate transistors to increase the read static noise margin for the SRAM cell when a bias voltage is applied to the screening region; and a bias voltage network operable to apply one or more bias voltages to the multiple SRAM cells.
The present disclosure provides a storage cell or storage structure having a static RAM-like operational behavior while nevertheless providing non-volatile storage capability on a single bit basis. To this end, a non-volatile storage element, such as a ferroelectric transistor element, may be provided within an inverter structure so as to allow the storage of a logic state at any desired operational phase by increasing the voltage difference used for operating the inverter structure. In illustrative embodiments, the stored logic state may be re-established during a power-up event.
Methods, systems, and devices are described for operating a memory array. A first voltage may be applied to a memory cell to activate a selection component of the memory cell prior to applying a second voltage to the memory cell. The second voltage may be applied to facilitate a sensing operation once the selection component is activated. The first voltage may be applied during a first portion of an access operation and may be used in determining a threshold voltage of the selection component. The subsequently applied second voltage may be applied during a second portion of the access operation and may have a magnitude associated with a preferred voltage for accessing a ferroelectric capacitor of the memory cell. In some cases, the second voltage has a greater rate of increase over time (e.g., a greater “ramp”) than the first voltage.
Disclosed are a latch circuit receiving a negative output of a next latch stage circuit as a feedback input, a double data rate (DDR) ring counter based on the latch circuit to perform DDR counting of pulse periods and reduce the number of toggles, a hybrid counting device counting lower-bit portion by using the latch-based DDR ring counter and upper-bit portion by using a binary counter, and an analog-to-digital converting device and a CMOS image sensor employing the hybrid counting device. A double data rate ring counter may include a plurality of latches coupled in a form of a ring. The plurality of latches may include positive-edge-triggered latches and negative-edge-triggered latches arranged alternately. A current latch stage receives an output of a preceding latch stage to shift to a next latch stage according to a counter clock, receives an output of the next latch stage to check a data shift to the next latch stage, and falls to a low level if the data shift is checked.
The present disclosure includes apparatuses and methods related to storing a data value in a sensing circuitry element. An example method comprises sensing a first data value with a sense amplifier of a sensing circuitry element, moving a second data value from a first storage location of a compute component to a second storage location of the compute component, and storing, in the first storage location, a third data value resulting from a logical operation performed on the first data value and the second data value. The logical operation can be performed by logic circuitry of the sensing circuitry element.
The present invention relates to a mobile terminal and a method of controlling therefor. To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, according to one embodiment, a mobile terminal, comprising a touch screen to display a video list that includes at least one video; and a controller configured to display a timeline corresponding to the at least one video according to a first input at the video list, wherein the timeline includes at least one of a start point indicator and an end point indicator to identify an editing section of the at least one video, and, play, on the touch screen, the editing section of the at least one video contained in the video list based on a second input at the video list.
Systems and methods for providing an interactive media guidance application for merging recorded video segments that are from the same program are provided. In response to a recording interruption, the interactive media guidance application may record multiple video segments. After recording the segments, the interactive media guidance application may search for and merge these segments to form a single recording. In some embodiments, the interactive media guidance application may detect the presence of a previously recorded segment. After detecting the previously recorded segment, the interactive media guidance application may automatically record the video following the end of the previously recorded segment. The interactive media guidance application may use data associated with the segments and other media cues to match the segments. The interactive media guidance application may also identify the duration of the recorded video content and provide choices for recording the video again.
In one aspect, an example method includes (i) receiving, by a computing system, a first command; (ii) responsive to receiving the first command, executing, by the computing system, a first portion of a digital-video effect (DVE) by sequentially performing a first subset of ordered steps, wherein executing the first portion of the DVE causes the computing system to generate a first portion of video content at a first frame rate; (iii) receiving, by the computing system, a second command that is different from the first command; and (iv) responsive to receiving the second command, executing, by the computing system, a second portion of the DVE by sequentially performing a second subset of ordered steps, wherein executing the second portion of the DVE causes the computing system to generate a second portion of the video content at a second frame rate that is different than the first frame rate.
An error correction block generated by performing error correction coding to the user data is divided into b number of sectors (b: a natural number), each sector having a number of bits (a: a natural number), the sector is divided into c number of sub-sectors (c: a natural number) and bits are distributed to each of the c number of sub-sectors, arrangement order of the bits is randomized for each sub-sector to which the bits are distributed, the c number of sub-sectors in which the arrangement order of the bits is randomized are combined to generate an interleaved sector, the interleaved sector is divided into c/d (d: a natural number, c≠d, and c>d) and e number of divided interleaved sectors (e: a natural number, e≠b, and b>e) are combined to generate a pre-modulation block, which is modulated by a modulation rule.
Recording in a memory configured to temporarily record captured images is controlled in response to a shift instruction from a user. A control unit receives, from the user, the shift instruction containing an information item of specifying any of images displayed on a display unit, and updates an image recording start position in the memory in response to the shift instruction. A recording region for preceding captured images with respect to the updated recording start position is set as an overwritable region so that subsequent captured images can be recorded. The display unit displays, for example, images captured at intervals of a predetermined time period so that the user can select any of the images and issue the shift instruction. In this way, a region preceding a position of a selected image in the memory is set to be overwritable so that the subsequent captured images are recorded.
In one embodiment, a system includes a controller for controlling a robotic accessor, and a memory in communication with and/or integrated with the controller for storing information about media and storage slots. The information includes data corresponding to a physical distribution of the media in the storage slots. Logic integrated with and/or executable by the controller is configured to position the robotic accessor at a computed optimal position during an idle period of the robotic accessor, the computed optimal position being based at least in part on at least one of: (a) the data corresponding to the physical distribution of the media in the storage slots, and (b) a center of access calculated using the data corresponding to the physical distribution of the media in the storage slots.
An optical disk drive is provided. The optical disk drive includes a first carrying member disposed on a base, and a second carrying member disposed on an upper cover. The first carrying member has a first optical pick-up head and a spindle motor. The second carrying member has a second optical pick-up head and a clamper rotatably disposed on the second carrying member. The clamper and the spindle motor together clamp an optical disk.
Before writing to a heat-assisted magnetic recording medium, a DC signal modulated with an AC signal is applied to a laser of a read/write head. A modulation level of an optical power sensor is measured, the optical power sensor being coupled to detect optical output of the laser in response to the modulated current. A target value of the DC signal that causes the modulation levels to reach a predetermined value between zero and a maximum value is determined and used to set a bias current for subsequent activation of the laser based.
Provided is an optical information recording medium including: a continuously wobbling groove formed in advance by a CAV or a zone CAV. Information is allowed to be recorded on the groove and a land adjacent to the groove, address information is recorded by modulating the wobble, the address information includes a sync pattern indicating a position of the address information and address data, and the sync pattern includes a plurality of first wobble patterns and a second wobble pattern between the first wobble patterns, and at least part of intervals of the first wobble patterns are set to unequal intervals.
A speech communication system and a method of improving communication in such a speech communication system between at least a first user and a second user may be configured so the system (a) transcribes a recorded portion of a speech communication between the at least first and second user to form a transcribed portion, (b) selects and marks at least one of the words of the transcribed portion which is considered to be a keyword of the speech communication, (c) performs a search for each keyword and produces at least one definition for each keyword, (d) calculates a trustworthiness factor for each keyword, each trustworthiness factor indicating a calculated validity of the respective definition(s), and (e) displays the transcribed portion as well as each of the keywords together with the respective definition and the trustworthiness factor thereof to at least one of the first user and the second user.
A noise suppression circuit for use in an audio signal processing circuit is provided. The noise suppression circuit includes a plurality of different types of noise activity detectors, which are each adapted for detecting the presence of a different type of noise in a received signal. The noise suppression circuit further includes a plurality of different types of noise reduction circuits, which are each adapted for removing a different type of detected noise, where each noise reduction circuit respectively corresponds to one of the plurality of noise activity detectors. The respective noise reduction circuit is then selectively activated to condition the received signal to reduce the amount of the detected types of noise, when each one of the plurality of noise activity detectors detects the presence of a corresponding type of noise in the received signal.
An approach is provided in which a question answer system monitors a voice conversation between a first entity and a second entity. During the conversation, the question answer system parses the conversation into information phrases, and constructs the information phrases into a current conversation pattern. The question answer system identifies deceptive conversation properties of the current conversation by analyzing the current conversation pattern against domain-based conversation patterns. The question answer system, in turn, sends an alert message to the first entity to notify the first entity of the identified deceptive conversation properties.
In one implementation, a computer-implemented method includes receiving, at a mobile computing device, ambiguous user input that indicates more than one of a plurality of commands; and determining a current context associated with the mobile computing device that indicates where the mobile computing device is currently located. The method can further include disambiguating the ambiguous user input by selecting a command from the plurality of commands based on the current context associated with the mobile computing device; and causing output associated with performance of the selected command to be provided by the mobile computing device.
Disclosed are a method for processing a dialog based on processing instructing expression in a multi-modal environment and an apparatus therefor. The method for processing a dialog in an information processing device capable of processing digital signals includes the steps of: extracting an instructing expression from an inputted sentence; generating an intermediate instructing expression representing the modifying relations between the words constituting the extracted instructing expression; and searching the object corresponding with the intermediate instructing expression in a predetermined object search range. Thus, a terminal can be effectively and conveniently used without separately clarifying various instructing expressions representing things or objects with the terminal.
Methods and systems are provided for adjusting an engine sound audible to the operator in a vehicle cabin during an engine idle-stop. In one example, responsive to an engine idle-stop, modified versions of a generated engine sound may be played via a dashboard speaker during each of the engine spin-down, engine rest, and engine spin-up. The modified versions of a generated engine sound may at least partially cancel inherent engine spin-up and engine spin-down sounds while maintaining an engine idling sound.
Apparatus having corresponding methods and computer-readable media comprises: a speaker configured to provide a masking sound to an individual; a biometric sensor configured to collect biometric data from the individual; and a controller configured to modify the masking sound based on the biometric data.
A keyboard with adjustable touch for a musical instrument, each key being a lever divided into front and rear arms, front arm forms on its upper part an operation surface and its lower part interacts with a centering guide, and the rear arm comprises, on its upper part, a counterweight and its lower part interacts with a stop each key comprises a key magnet (KM) mounted on the rear side, facing another magnet (SM) that is mounted on a regulation device which is affixed to the musical instrument chassis, the magnets (KM and SM) are substantially placed face to face, opposed by their equivalent polar faces, the relative position they have to each other is set by the regulation device and generating the effect on the keyboard touch.
A sound production control apparatus by which a sound production mode is controlled on the basis of a player's motion even during a non-playing control operation period. An information obtaining unit 30 obtains detection information by detecting a player's motion. A sound processing unit 36 produces sound on the basis of the detection information obtained in response to operation for generating a sound trigger in the player's motion, and controls a sound production mode on the basis of the detection information obtained in response to operation for generating no sound trigger in the player's motion.
A mounting assembly configured for detachably mounting a percussion instrument to an instrument stand is disclosed. The assembly has an instrument mounting assembly that has a clamp bracket, a clamp, and a wing screw. An instrument is held to the instrument mounting assembly by placing a mountable portion of the instrument between a set of notches carved out of a first and a second side of the clamp bracket and a clamp. The instrument is secured in the bracket by screwing the wing nut through a hole in a third side of the clamp bracket to cause the clamp to apply a force against the mountable portion of the instrument such that the instrument is held in place between the notches and a groove of the clamp.
A liquid crystal display device according to the present disclosure includes a timing controller, a power supply unit, a data supply unit, and a liquid crystal display panel. The timing controller analyzes image data to sense a target pattern, and generates an operating signal in a case where the target pattern is sensed. The power supply unit generates first to fourth gamma voltages in a case where the operating signal is not received. The power supply unit generates first to fourth modulation voltages after a variable time in a case where the operating signal is received. The difference between the first and second modulation voltages is smaller than the difference between the first and second gamma voltages, and the difference between the third and fourth modulation voltages is smaller than the difference between the third and fourth gamma voltages.
An LCD device includes: multiple data lines, scanning lines, pixel units and switching elements. First terminals of the switching elements are connected together for receiving a control signal. Second terminals of the switching elements are connected together for receiving a reference voltage signal. Third terminal of each switching element is connected to a corresponding data line. When the control signal is a first control signal, each switching element is turned off, grayscale voltage signals are applied on corresponding pixel units, and a normal image frame is displayed. When the control signal is a second control signal, each switching element is turned on, the reference voltage signal is applied on the pixel units, an inserted black frame is displayed. A simple and power-saving way for an inserted black frame is realized to solve the cross talk in 3D display or a serious image smear problem in low refresh rate.
An electrophoretic apparatus includes a first electrode, a second electrode, an electrophoretic element which is interposed between the first electrode and the second electrode, and a pixel circuit which is connected to a scanning line and a data line, and which includes a first transistor configured to supply a first electric potential to the first electrode, a second transistor configured to supply a second electric potential to the first electric potential, a third transistor configured to supply a third electric potential to the first electrode; a fourth transistor configured to supply a signal supplied through the data line to the first transistor, a fifth transistor configured to supply a signal supplied through the data line to the second transistor, and a sixth transistor configured to supply a signal supplied through the data line to the third transistor.
A display device in an embodiment according to the present invention includes a pixel region includes a plurality of pixels arranged in a matrix, a first power source line arranged in the pixel region and provided with a first power source voltage supplying a current to the plurality of pixels, a second power source line located in a layer higher than the first power source line in the pixel region and including an intersection part intersecting the first power source line and provided with a second power source voltage different to the first power source voltage, a conducting layer interposed between the first power source line and the second power source line via an insulation layer and having at least one part overlapping the intersection part, a current detection portion electrically connected with the conducting layer.
A pixel circuit includes an OLED, an OLED driving block, a first switch, and a second switch. The OLED has an anode and a cathode connected to ELVSS. The OLED driving block connected between the anode and ELVDD controls a driving current flowing through the OLED, a first switch is turned on or off responding to a first control-signal and transfers a sensing-bias-voltage to the anode when turned on. The second switch is turned on or off responding to a second control-signal and transfers a deterioration-sensing-voltage to the anode when turned on. In a display mode, the first and second switches are turned off. In a deterioration sensing mode, the first switch is turned on and the second switch is turned off during a first time, and the first switch is turned off and the second switch is turned on during a second time.
The present disclosure discloses an OLED pixel circuit, a display apparatus, and a control method. The OLED pixel circuit includes an OLED; a driving transistor a drain electrode of which is connected with the OLED; a first switching unit configured to output, during a light-emitting stage, a power source signal to a source electrode of the driving transistor; a second switching unit configured to output, during a present scanning stage, a data signal to a gate electrode of the driving transistor; a compensation unit having a capacitor, and a charging control unit configured to output, during a charging stage, a charging signal to the capacitor for charging the capacitor so that the capacitor can maintain, during the light-emitting stage, a voltage of the gate electrode of the driving transistor. The charging signal has a voltage value greater than an actual voltage value of the data signal.
A pixel set may include the following elements: a first diode for emitting first light of first color in a first time period; a second diode for emitting second light of second color in a second time period not overlapping the first time period; a first driving transistor for controlling electrical connection between a first power supply line and the first diode; a second driving transistor for controlling electrical connection between a second power supply line and the second diode; and a data transistor for transmitting a data voltage to a gate electrode of the first driving transistor and a gate electrode of the second driving transistor in response to a scan signal.
Provided are a sequence controlled timing controller, a bridge integrated circuit, and a method of driving thereof. The bridge integrated circuit which controls an interface unit, an image converting unit, and a transceiver to transmit image to the timing controller when a loading completed signal is received from the timing controller can be provided. Further, the method of driving the bridge integrated circuit and the timing controller to transmit and receive the loading completed signal so that the bridge integrated circuit converts image data and transmits the converted image data to the timing controller can be provided.
A timing controller includes an image determining part configured to determine whether an input image is a static image based on input image data, a signal controller configured to shift a timing of a first data enable signal to generate a second data enable signal when the input image is the static image, and a signal generator configured to generate control signals based on the second data enable signal.
Deployable display with an expansion system comprising a traction elastic element. The elastic element is basically formed by an elastic band which is annular or is cord-type with engaging elements, and optionally by at least one extension for extending the length of a said band, formed by a plate made of flexible or semi-flexible sheet material provided with engaging elements for said elastic band, the assembly in turn being engaged to side projections of the display. The limiting system is implemented by the reduction in the elastic force and/or by the own resting length of the elastic band in cooperation, where appropriate, with the length of the extension element.
Participatory activity carried out using electronic devices is enhanced by occupying the attention of participants who complete a task before a set completion time. For example, a request or question having an expected response time less than the remaining answer time may be provided to early-finishing participants.
An educational tactile sensation providing apparatus includes a top panel having a manipulation input surface; a position detector configured to detect a position of a manipulation input performed on the manipulation input surface; a display part disposed on a back face side of the top panel; a first vibrating element configured to generate a vibration in the manipulation input surface of the top panel; a memory configured to store tactile sensation data in which an image of a target tangible object is associated with positions in the image and amplitudes corresponding to tactile sensations of the target tangible object at the respective positions; and a drive controlling part configured to adjust an amplitude of a driving signal based on the position of the manipulation input performed on the manipulation input surface and a position among the positions in the image included in the tactile sensation data.
An RFID book detection system for school children may comprise a plurality of book jackets, at least an assignment system, and a school bag. The book jackets respectively fit around different books, and each of the book jackets has a corresponding RFID tag on a surface thereof. The assignment system is provided for saving and managing input information including at least a curriculum and RFIDs on the RFID tags, and the school bag used for placing the books comprises a sensor which is connected to the assignment system to check whether the books in the school bag are exactly the same as the next day's course schedule on the input curriculum saved in the assignment system. Thus, the child can scan the RFIF tags on the book jackets one by one before putting the books into the school bag, which helps child to learn packing his/her school bag independently.
A system is configured for a developer/modeler to be able to define various steps. Each step can be a step in the installation of a product. Each step can have one or more cards. Each card corresponds to a screen which can be presented to a user and which displays various information such as an instruction, a list of items to be installed, etc. There is a sequential relationship between the steps. A first step and a last step are defined, with each step in-between having a preceding and a following step. Similarly, for each of the steps that includes more than one card, there is a sequential relationship between the cards of the respective step, which cards include a first card, a last card, and intermediate cards, each of the latter of which has a preceding card and a following card.
A method including retrieving a multi-dimensional map from a navigation system memory; determining an aerial route between two locations based at least partially upon the multi-dimensional map; and storing the aerial route in the navigation system memory. The multi-dimensional map includes terrain information and object information. The object information includes information regarding location and size of objects extending above ground level. The objects are in uncontrolled airspace, and the object information includes height information regarding a height above ground level of at least some of the objects. The aerial route is limited to the uncontrolled airspace, where the aerial route is over and around at least some of the objects, and where the aerial route is determined, at least partially, based upon the height information of the objects.
A method for monitoring the flight trajectory of an aircraft comprises the steps reiterated in time consisting in receiving and comparing two trajectory objects, the trajectory objects being associated with two initially identical flight trajectories determined independently of each other over time; and, in case of difference between the two trajectory objects, determining a failed trajectory from the two flight trajectories by comparison with the last known state without fault, the last known state without fault corresponding to two identical trajectory objects. Developments describe the use of flight plan segments, of signatures, fault isolation simultaneously to a change of current leg, the use of levels of operational safety according to an RNP-AR procedure and the notification of the pilot of the trajectory determined as having failed. Software and system aspects are also described.
To improve traveling safety of a vehicle by continuing an alarm after the end of a crash prevention control for preventing a crash between an own vehicle and a target object, a drive support apparatus of the invention detects the target object which exists in a predetermined detection area ahead of the own vehicle, starts to issue an alarm with an alarm generating part to a driver of the own vehicle if probability of a crash between the own vehicle and the target object is greater than a predetermined value, start a crash prevention control in which an automatic driving operation is performed for preventing the crash with the target object, and continues to issue the alarm until a predetermined timing (timing when the driver of the own vehicle performs a predetermined driving operation, for example) after the crash prevention control by the crash prevention controlling part has been ended.
In an approach for adapting traffic signal timing, a computer receives a streaming video for one or more paths of a first intersection. The computer identifies traffic within the received streaming video. The computer calculates traffic flow for the one or more paths of the first intersection based on the identified traffic. The computer determines whether a change in a state of a traffic signal for the first intersection should occur based at least in part on the identified traffic and the determined traffic flow with respect to predefined objectives. Responsive to determining the change in the state of the traffic signal for the first intersection should occur, the computer calculates a change to a traffic signal timing based on the determined change in the state of the traffic signal. The computer initiates an adaptation to the traffic signal timing based on the determined change to the traffic signal timing.
An approach is provided for classifying a traffic jam from probe data. The approach involves receiving the probe data that is map-matched to a roadway on which the traffic jam is detected. The probe data is collected from one or more vehicles traveling the roadway. The approach also involves determining a jam area of the roadway based on the probe data. The jam area corresponds to one or more segments of the roadway affected by the traffic jam. The approach further involves determining a set of features indicated by the probe data from a portion of the probe data collected from the jam area. The approach further involves classifying, using a machine learning classifier, the traffic jam as either a recurring traffic jam or a non-recurring traffic jam based on the set of features.
Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyzes (also referred to herein as “summaries” or “conclusions”) of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures.
An alarm system includes a detector positioned to detect when an object experiences an unauthorized removal and which produces an alarm signal when the object experiences an unauthorized removal. The alarm system includes a global positioning system (GPS) and a transmitter in communication with the detector which transmits wirelessly an alarm alert signal with coordinates of the transmitter's location when the transmitter receives the alarm signal. The alarm system includes a power supply control portion in communication with the transmitter which controls power to the transmitter. A method for protecting an object.
A game machine displays a movie in which at least one object moves in a predetermined area. The game machine includes an attribute management data storage device that stores attribute management data for managing a plurality of types of attributes. And the game machine specifies at least one holes to be assigned with any one of attributes in the predetermined area, select an attribute to be assigned to the hole by lottery from attributes, assigns the attribute selected to the hole, and generates in a game, change corresponding to the attribute assigned to the hole when the object reaches the hole on the movie.
A system for authentication of paper sheet and other articles includes an optical sensor configured to generate an image of a first side of an article and a processor operatively connected to the optical sensor. The processor is configured to generate an image of the article with the optical sensor, the image including features that are illuminated by an external illumination source through the article, and generate an output indicating if the article is authentic in response to the features corresponding to a predetermined plurality of features that are generated from another image of the article corresponding to features in the generated image and in response to a cryptographic signature corresponding to feature data that are extracted from the other image corresponding to a valid cryptographic signature of a predetermined party.
An on-vehicle apparatus control system includes: a first on-vehicle switch and a second located farther from an on-vehicle reception unit than the first on-vehicle switch; an on-vehicle control device; and a portable machine. In a case where the on-vehicle switches is operated, the on-vehicle control device transmits a response request signal to the portable machine, the portable machine returns a response signal, and the on-vehicle control device controls an on-vehicle apparatus. The on-vehicle apparatus control system further includes a level switch. In a case where the first on-vehicle switch is operated, the level switch switches transmission intensity of a portable machine transmission unit or reception sensitivity of an on-vehicle reception unit to a first level, and in a case where the second on-vehicle switch is operated, the level switch switches the transmission intensity or the reception sensitivity to a second level higher than the first level.
An engine state detection device adapted to a vehicle engine is electrically connected to a battery module providing a power signal is disclosed. The device includes a windowed comparison circuit and a controller. The windowed comparison circuit is configured to receive the power signal and convert the power signal to one of a plurality of sets of subject signals according to one of a plurality of level profiles. Each of the plurality of level profiles is related to a respective one of the plurality sets of subject signals. The controller is configured to perform an algorithm on the set of subject signal converted from the power signal for generating a combination signal, and determine a state of the vehicle engine according to the set of subject signal converted and the combination signal. The level profile on which the windowed comparison circuit depends is determined by the controller.
In current systems, augmented reality graphics is generated at a central broadcast facility or studio where it is combined with the video that is transmitted to subscribers. By contrast, in the described system, the studio does not generate the graphics, but transmits video together with real-time metadata to the end-user set-top device. The end-user device generates the augmented reality graphics, using the metadata to determine positional and other parameters for displaying the graphics. Shifting the generation of augmented reality graphics to the consumer level facilitates end-user customization and individualized targeting of information by a broadcaster or advertiser.
An exemplary virtual reality media provider system (“system”) manages data representative of an immersive virtual reality world (“world”) and receives a request from a media player device (“device”) for the device to receive a pixel data transmission representative of a particular scene of the world by way of a network. The device includes a head-mounted display screen worn by a user to view the particular scene as the user experiences the world. The system identifies pixel data representative of a set of pixels that constitute the particular scene and provides a minimized pixel data transmission representative of the particular scene to the device by transmitting a viewable pixel data subset corresponding to regions of the display screen predetermined to be viewable by the user and abstaining from transmitting an unviewable pixel data subset corresponding to regions of the display screen predetermined to be unviewable by the user.
Approaches are described for enabling a user to create an accurate perspective rendering of a source (e.g., a scene, object, subject, point of interest, etc.) on a drawing surface. For example, various approaches enable superimposition of the source being viewed upon a drawing surface upon which a user is drawing. In this way, the user can view both the source and drawing surface simultaneously. This allows the user to duplicate key points of the source on the drawing surface by viewing a display of a device, thus aiding in the accurate rendering of perspective.
A map database stores map data in multiple levels having different levels of details. In displaying a three-dimensional map, the map data having a higher level of details is used for a close view area near the viewpoint to a predetermined distance, and the map data having a lower level of details is used for a distant view area farther from the predetermined distance. The distant view area is first drawn by a perspective projection, and then, after clearing a depth buffer that stores depth information, the close view area is drawn, such that an undesirable hidden line removal process based on the depth information is not performed between the projected image in the distant view area and that in the close view area, thereby avoiding an unnatural phenomenon in which part of the close view image is hidden by the distant view image.
A graphics processor includes a graphics object list building unit that determines the location of each draw call in a scene to be rendered and generates a list of draw calls for each sub-region (tile) that the scene to be rendered is divided into. The draw call lists are stored in a memory. A graphics object selection unit of a renderer of the graphics processor then determines which draw call is to be rendered next by considering the draw call list stored in the memory for the sub-region (tile) of the scene that is currently being rendered.
Animation by creating intermediate objects for transitioning between two objects having a mappable function. In certain implementations a processor determines whether a first object in a first slide in the slide presentation differs from a matching second object in a second slide in the presentation in one or more properties that have one or more corresponding known mappable transition functions other than translation, rotation, or scaling transitions. Furthermore, the processor creates one or more intermediate objects that incrementally reflect changes from the first object to the second object based at least in part on the one or more mapped transition functions where the one or more intermediate objects are configured to smooth the transition from the first object to the second object.
A unified image processing algorithm results in better post-processing quality for combined images that are made up of multiple single-capture images. To ensure that each single-capture image is processed in the context of the entire combined image, the combined image is analyzed to determine portions of the image (referred to as “zones”) that should be processed with the same parameters for various image processing algorithms. These zones may be determined based on the content of the combined image. Alternatively, these zones may be determined based on the position of each single-capture image with respect to the entire combined image or the other single-capture images. Once zones and their corresponding image processing parameters are determined for the combined image, they are translated to corresponding zones each of the single-capture images. Finally, the image processing algorithms are applied to each of the single-capture images using the zone-specified parameters.
A method, executed by a processor of an image generation system, includes obtaining an image of a first area included in a first image and an image of a second area included in a second image, calculating a first conversion parameter for converting the image of the first area such that color information regarding the image of the first area becomes similar to color information regarding the image of the second area, converting the first image using the first conversion parameter, and generating a third image as a training image used for machine learning for image recognition by combining the converted first image and the second image with each other.
A picture processing method and apparatus are described. The method includes: detecting newly-added pictures in a photo album in a computing device; acquiring information about the newly-added pictures, the information including either or both of a photographing time and a photographing place; updating a to-be-processed picture set according to the information about the newly-added pictures; selecting a picture processing template matching the to-be-processed picture set; and processing pictures in the to-be-processed picture set by using the picture processing template. The method can automatically process a newly-added picture, thereby reducing time costs of a user for picture processing.
A calibration method for an MPI (=magnetic particle imaging) apparatus for conducting an MPI experiment, wherein the calibration method comprises m calibration MPI measurements with a calibration test piece and uses these measurements to create an image reconstruction matrix with which the signal contributions of N voxels within an investigation volume of the MPI apparatus are determined, wherein compressed sensing steps are applied in the calibration method with a transformation matrix that sparsifies the image construction matrix, and wherein only a number M
In a photometric system, a photosensor-equipped unit includes a transmission information holding portion that holds transmission information relating to a screen display direction of a display portion with a content suitable for a photosensor. When the photosensor-equipped unit is connected to a display processing terminal device, the photosensor-equipped unit can transmit the transmission information to the display processing terminal device. The display processing terminal device includes a screen display control portion that executes a display direction setting process during connection for setting a screen display direction of the display portion based upon the transmission information.
In one embodiment, a light sensor, such as a camera, records an image through the surface with the residue to produce a stained image. A processor associated with the camera identifies object outlines within the image using a machine learning model, and smooth the colors within the object outlines. In another embodiment, the light sensor is placed beneath a dual-mode region of a display containing the residue. The dual-mode region can be opaque and function as part of the display, or can be transparent and allow environment light to reach the light sensor. Initially, the processor determines the position of the residue by causing the dual-mode region to display a predetermined pattern, while the light sensor records the predetermined pattern. Using the determined position of the residue, the processor corrects the pixels within the residue in the recorded image, by interpolating the values of the pixels outside of the residue.
Exemplary method, system, and computer-accessible medium can be provided for determining a measure of diffusional kurtosis by receiving data relating to at least one diffusion weighted image, and determining a measure of a diffusional kurtosis as a function of the received data using a closed form solution procedure. In accordance with certain exemplary embodiments of the present disclosure, provided herein are computer-accessible medium, systems and methods for, e.g., imaging in an MRI system, and, more particularly for facilitating estimation of tensors and tensor-derived measures in diffusional kurtosis imaging (DKI). For example, DKI can facilitate a characterization of non-Gaussian diffusion of water molecules in biological tissues. The diffusion and kurtosis tensors parameterizing the DKI model can typically be estimated via unconstrained least squares (LS) methods. In the presence of noise, motion, and imaging artifacts, these methods can be prone to producing physically and/or biologically implausible tensor estimates. The exemplary embodiments of the present disclosure can address at least this deficiency by formulating an exemplary estimation problem, e.g., as linearly constrained linear LS, where the constraints can ensure acceptable tensor estimates.
A method of inspecting plants for contamination includes generating a first series of images of a plant using a camera mounted to a frame being moved along a planting bed by a harvester, identifying a region of interest displayed in the first series of images as a region of contamination on the plant based on a color criterion and a morphological criterion applied to the region of interest, and transmitting data including an instruction to increase a vertical distance between the plant and a cutter of the harvester to avoid harvesting the plant in response to identifying the region of interest as the region of contamination. The method further includes generating a second series of images of an additional plant as the frame continues to be moved along the planting bed by the harvester while the vertical distance between the plant and the cutter is being increased.
An image processing apparatus sets a predetermined reading resolution for acquiring image data and a division size for performing a predetermined process on the image data and extract a unique portion from image data resulting from performing the predetermined process. The predetermined process includes an averaging process on the image data for each of division areas obtained by dividing the image data by the predetermined division size, a quantization process for quantizing values obtained by the averaging process, and an addition process for adding values obtained by the quantization process, that are different in the dividing way of the image data in the averaging process. The setting unit sets the predetermined reading resolution so as to make the width of the unique portion in the image correspond to N read pixels (N≥2), and sets the division size so as to have a width larger than N pixels.
A method of monitoring equipment data of a piece of equipment includes extracting data specifications from a first image, the first image including data specification information for the piece of equipment, and storing the data specifications. The method further includes extracting measurement data from at least one second image, the at least one second image including measurement information for the piece of equipment. The method further includes associating the measurement data with the piece of equipment and storing the measurement data. The method further includes generating a measurement data trend profile for the piece of equipment and comparing operational measurement data against the measurement data trend profile. The method further includes notifying one or more users when the operational measurement data associated with the piece of equipment deviates from the measurement data trend profile.
Disclosed is a technique capable of efficiently storing and retaining characteristic data (a restoration filter or the like) of an optical system used for a restoration process in a storage unit with limited storage capacity in consideration of the degree of image restoration. An image processing device includes a characteristic data storage unit 42 which is capable of storing characteristic data of a plurality of types of optical systems, and a restoration processing unit which subjects source image data to a restoration process using a restoration filter based on a point spread function of an optical system to acquire recovered image data. In case where storing new characteristic data in the characteristic data storage unit, characteristic data which is stored in the characteristic data storage unit 42 is controlled based on a restoration evaluation value which is allocated to characteristic data according to the type of optical system.
A noise-aware single-image super-resolution (SI-SR) method and apparatus automatically cancels additive noise while adding detail learned from lower scale of an input image. A recent and efficient in-place cross-scale self-similarity prior is exploited for both learning fine detail examples to complement the interpolation-based upscaled image patches and reducing image noise.
Embodiments of the present invention provide resource managing methods and systems. The method comprises: receiving a request to allocate resources sent from host code of an application program located on a first device; in accordance with the allocation request and a maintained mapping logic mapping available hardware resources of at least one graphics processing unit (GPU) of the first device to a unified virtual GPU resource, allocating required resources for a device code of the application program from the available hardware resources of at least one GPU of the first device; and forwarding information of the allocated resource back to the host code. The present invention can efficiently utilize GPU resources and reduce implementation costs.
The claimed subject matter includes techniques for live migration of a graphics processing unit (GPU) state. An example method includes receiving recorded GPU commands from a relay at a destination GPU. The method also includes replaying the recorded GPU commands at the destination GPU. The method also includes detecting a downtime for the GPU commands. The method further includes establishing a connection between the destination GPU and the client during the detected downtime.
A system and method for constructing binary radix trees in parallel, which are used for as a building block for constructing secondary trees. A non-transitory computer-readable storage medium having computer-executable instructions for causing a computer system to perform a method is disclosed. The method includes determining a plurality of primitives comprising a total number of primitive nodes that are indexed, wherein the plurality of primitives correspond to leaf nodes of a hierarchical tree. The method includes sorting the plurality of primitives. The method includes building the hierarchical tree in a manner requiring at most a linear amount of temporary storage with respect to the total number of primitive nodes. The method includes building an internal node of the hierarchical tree in parallel with one or more of its ancestor nodes.
Methods and systems for rebate modeling are described. In an embodiment, a formulary of a plan sponsor is accessed. Prescription drug utilization data is accessed. Drug pricing information is accessed. Benefit design including co-pay structure of the plan sponsor is accessed. A plan sponsor rebate for a drug classification is calculated. An alternate plan sponsor rebate is calculated based on a formulary modification, a benefit design modification, or both the formulary modification and the benefit design modification. A difference between the plan sponsor rebate and alternate plan sponsor rebate is determined. A display is generated based on a determination of the difference. Additional methods and systems are disclosed.
A statistically overrepresented token in the descriptions of users associated with a target entity may be descriptive of the target entity. This may be true regardless of whether a primary description of the entity includes the overrepresented token. Accordingly, the entity description machine may access multiple descriptions of multiple users associated with the target entity. A portion of the multiple descriptions may each include a token descriptive of the target entity and of a subset of the multiple users. The entity description machine may determine that the token is overrepresented among the tokens within the multiple descriptions and generate a supplemental description of the target entity, where the supplemental description includes the overrepresented token. Once the supplemental description is generated, the entity description machine may use the supplemental description in referencing the target entity.
A user device receives, from a server associated with a merchant, a menu of items offered for sale by the merchant. The menu permits a user, of the user device, to place an order associated with the merchant. The user device receives, from the server, information, associated with the order, that includes at least one item and a price associated with the item. The user device receives a user instruction to pay for the order and retrieves, from a memory associated with the user device, payment information to pay the price associated with the at least one item. The user device sends, to the server, the payment information to permit the server to process the payment information. The sending is performed in a manner that does not permit an attendant associated with the merchant to access the payment information. The user device receives an indication the payment information was processed.
A portable device which assists shoppers. The device identifies items of merchandise, and retrieves information about the items from a remote location. The items can be identified based on their labels, by image recognition, by their location, by the shopper, or by other approaches. This additional or enhanced information about the items can then be overlaid on the real-time display of the portable device, such that the shopper has access to said information and can associate it easily to the relevant items.
A system and method for searching databases is disclosed herein. A database system may comprise a first database cluster H and a second database cluster L. After receiving a search request from a requester, the search request is executed in the first database cluster H to retrieve a first set of results. If the first set of results is greater than a minimum number of results, then the first set of results are presented to the requester. Otherwise, the second database cluster L is searched to retrieve a second set of results. Then the first set of results and the second set of results are presented to the requester. The first database cluster H is stored on a first database server; and the second database cluster L is stored on a second database server apart from the first database server. Other embodiments are also disclosed herein.
A system and method for conveying product information. The system includes an interactive product guide that has product options linked to a product database comprising product data organized in an ontology and a taxonomy. The product options dynamically switch from being available or unavailable for selection by a user depending on prior option selections by the user. Product data from the product database corresponding to products characterized by the selected options are presented to the user. Methods for using the system include presenting the system to a user for interaction therewith.
Methods and systems for content aggregation and distribution are described. Video content may be received from a plurality of sources. The video content may be associated with metadata identifying items included within the video content. A video player may be provided which enables video content to be displayed on a user terminal, and a control may be provided enabling the user to quickly navigate to specific portions of the video content. A viewer of the video content may, in turn, author and provide additional video content. The video player may be embeddable.
A method and system relate to receiving first comments, associated with first digital content, that are submitted by a first user, and determining an opinion of the first user with respect to the first digital content based on the one or more first comments. Determining the opinion of the first user with respect to the first digital content includes parsing the one or more first comments to determine a term included in the one or more first comments, and determining the opinion based on the term. The first user is clustered with second users who share the first users opinion regarding the first digital content. Second digital content, liked by at least one of the second users and have accessed by the first user, are identified, and a recommendation identifying the second digital content is presented for display to the first user.
A current behavioral targeting system is first tested using a suite of test data. The output of the test is one or more performance metrics. Next, newly proposed behavioral targeting system created. The newly proposed behavioral targeting system is then evaluated using both the existing source data and a new source data. The evaluation of the newly proposed behavioral targeting system produces one or more performance metrics of the same type earlier calculated. Finally, the two sets of performance metrics are compared. The performance metric difference represents the impact of the new source data.
A scanner recognizes types of images and components of those image types. Custom routing rules are applied against the types and components and the scanner utilizes multiple network connections to route the images and components to destinations within a Point-Of-Sale (POS) terminal and external to the POS terminal over a Wide-Area Network (WAN) and/or a Local-Area Network (LAN).
An imaging device provides a mobile device multi-feed scanner, which may utilize remote data capture for multi-sheet feed scanning by using mirrors to form a reflective path allowing the viewing of the reverse side of the check on a platform to capture the check image on a mobile device. A camera on the mobile device may either sequentially or simultaneously capture a picture of both the front and back sides of the check. The platform may include a transparent portion, which may be adjacent to a stage portion. The first and second mirrors may be positioned such as to allow imaging of a reverse side of an object through the transparent portion of the platform while the object rests on the stage portion.
There is disclosed methods and systems for managing drop boxes. Events reflecting outputs from one or more sensors are detected. Information that is a function of the detected event is forwarded to a drop box management system. This information, along with additional information received by the drop box management system, is utilized to generate instructions including display instructions for each drop box. Displays of drop boxes are then updated based on the instructions.
A method, system and device are provided that collect and provide information related to worker productivity. The goods may be or include consumer products, commodities, equipment, food, food products, agricultural supplies and agricultural products. A label may be employed that includes a display screen, a bar code, a quick response code, an RFID chip and/or a radio frequency or photonic communications device to aid tracking of accomplished piecework and worker behavior. The worker may confirm documentation of piecework credit by both displays of piecework counts by the badge and by accessing a database server.
The present invention relates to the field of IT Sourcing Management and more specifically to the IT sourcing management and governance (SMG) covering multi geography, multi sourcing and multi vendor environments at an enterprise level. The enterprise governance solution with core sourcing management functional components includes a contract compliance management module, a IT spend visibility management and reporting module, a value driver management and reporting module, a contract compliance audit management module, a contract evaluation analysis module, a performance management module, with underlying governance processes such as organization change management, stake holder relationship management, governance, compliance and risk management, performance management, service delivery management, service quality management, communication management and reporting. The SMG solution enhances and optimizes relationship between the customer and the vendor organizations by utilizing the core modules regardless of the scope, objectives, contracts, IT sourcing programs, vendors, service delivery locations and region, country and business units.
Systems and methods are disclosed for applying neural networks in resource-constrained environments. A system may include a sensor located in a resource-constrained environment configured to generate sensor data of the resource-constrained environment. The system may also include a first computing device not located in the resource-constrained environment configured to produce a neural network structure based on the sensor data. The system may further include a second computing device located in the resource-constrained environment configured to provide the sensor data as input to the neural network structure. The second computing device may be further configured to determine a state of the resource-constrained environment based on the input of the sensor data to the neural network structure.
Embodiments of the present invention relate to learning image representation by distilling from multi-task networks. In implementation, more than one single-task network is trained with heterogeneous labels. In some embodiments, each of the single-task networks is transformed into a Siamese structure with three branches of sub-networks so that a common triplet ranking loss can be applied to each branch. A distilling network is trained that approximates the single-task networks on a common ranking task. In some embodiments, the distilling network is a Siamese network whose ranking function is optimized to approximate an ensemble ranking of each of the single-task networks. The distilling network can be utilized to predict tags to associate with a test image or identify similar images to the test image.
Devices and methods of disrupting data transfer between an RFID interrogation device (50, 50′) and an RFID data storage device (30, 30′) to be protected, are provided. An example of an embodiment of an RFID signal disruptor device includes a container (41, 141) and an RFID signal disruptor circuit (151, 161, 161′, 171, 171′, 271, 271′) configured to substantially disrupt the signal provided by the RFID interrogation device (50, 50′) when the RFID signal disruptor device is positioned to protect the RFID data storage device (30, 30′). The RFID signal disruptor device can also include an interrogation indicator (63, 296) configured to indicate to a user of the RFID data storage device (30, 30′) that an unauthorized RFID interrogation device (50, 50′) is attempting to interrogate the RFID data storage device (30, 30′) when the RFID signal disruptor device is positioned in close proximity to the RFID data storage device (30, 30′) to provide protection thereto and when the RFID interrogation device (50, 50′) is producing the interrogation signal.
A look-up table generating method generates a look-up table by synthesizing at least first and second look-up tables to indicate first and second output characteristics for first and second region. The first output characteristic includes an output characteristic in which a first color difference between color values of the first and second color materials under a first observation light source is within a first range for all of the first region, and a second color difference between color values of the first and second color materials under a second observation light source is outside a second range for at least part of the first region. The second output characteristic includes an output characteristic in which the first color difference is outside the first range for at least part of the second region, and the second color difference is within the second range for all of the second region.
One embodiment of the present invention relates to a machine-readable form configuration (and associated method). Another embodiment of the present invention relates to a system for interpreting at least one user mark (and associated methods). In one example, a plurality of user marks may be interpreted. In another example, the machine-readable form may be a lottery play slip, survey, test, or the like. In another example, the system may interpret user mark(s) made on a lottery play slip, survey, test or the like. In another example, the system may interpret user mark(s) made on a paper or the like having non-planar distortion(s).
This application discloses a method implemented by an electronic device to detect a signature event (e.g., a baby cry event) associated with an audio feature (e.g., baby sound). The electronic device obtains a classifier model from a remote server. The classifier model is determined according to predetermined capabilities of the electronic device and ambient sound characteristics of the electronic device, and distinguishes the audio feature from a plurality of alternative features and ambient noises. When the electronic device obtains audio data, it splits the audio data to a plurality of sound components each associated with a respective frequency or frequency band and including a series of time windows. The electronic device further extracts a feature vector from the sound components, classifies the extracted feature vector to obtain a probability value according to the classifier model, and detects the signature event based on the probability value.
A system and method for monitoring sensors via surveillance cameras is disclosed. In the system, surveillance cameras generating image data of scenes, where the sensors are included in the scenes. The sensors detect information concerning the scenes and encode the information so that it can be derived from the image data. Preferably, the sensors encode the information concerning the scenes by modulating a visible light source, the signals of which are captured within the image data by the cameras. An analytics system then analyzes the image data and decodes the information from the sensors encoded within the image data. Preferably, an integrated analytics system of the cameras executes the analysis. Exemplary sensors include sensors for detecting temperature, moisture, audio/voice, and product selection in a retail premises.
An optical device includes a first substrate, a second substrate, a first transmitting portion, N light-emitting portions, and a light-receiving portion. The first transmitting portion is disposed in the first substrate. The N light-emitting portions are disposed in the first substrate, and the N is an integer of 2 or more. The light-receiving portion is configured to receive light passing through the first transmitting portion and is disposed in the second substrate.
A mobile data collector with a keyboard, used to be combined with a mobile electronic device, includes a protective cover, a data reader, and a keyboard module. The protective cover has a bottom plate and a surrounding frame. The surrounding frame is disposed along the perimeter of the bottom plate to form a first accommodation space and a second accommodation space located at one side of the first accommodation space. The mobile electronic device is disposed at the first accommodation space. The data reader is located at a side of the bottom plate opposite to the mobile electronic device and is electrically connected to the mobile electronic device. The keyboard module is disposed in the second accommodation space and electrically connected to the data reader. Thus, the mobile data collector has an input interface for inputting or modifying related information, which enhances usage convenience.
An asset tracking system that optimizes the value per ping by tying the ping to a pattern of movements of the asset. The asset tracking device will send a ping to a remote host (i.e., receiver) when predetermined qualified event is detected by the device. In such a manner, the value per ping is optimized, leading to increased battery life and decreased operational cost. To satisfy these conditions, the asset tracking device is equipped with appropriate sensors, actuators, and trigger mechanism(s). A four-phase methodology or algorithm used to detect and determine when detected motions and movements warrant triggering the data ping.
A sensory totem badge capable of transmitting individualized information and includes: a totem badge body attached or sewed onto an object surface; an e-tag, installed to the totem badge body, and including an NFC chip and an NFC coil; and a totem individualized information, stored in the e-tag or a cloud server; such that when a mobile sensing device is near the e-tag of the totem badge body, the implication represented by a totem on the totem badge body, the story behind it, or private words can be read. Therefore, the totem badge body is given with intangible specificity and commemoration to achieve higher value and sense of technology.
An apparatus, system and method to track location, the apparatus including: a substantially planar disposable housing comprising an electronics compartment; a secondary technology sensor disposed along a periphery of the disposable housing; an electronics module disposed within the electronics compartment, the electronics module comprising: a processor coupled to a memory; an RF transceiver coupled to an RF antenna and to the processor; a secondary technology transceiver coupled to the processor; and a battery coupled to the apparatus, wherein the battery is not field-replaceable. The apparatus may further include a marking to indicate a predetermined period of time that the apparatus is operable. Embodiments further include an unattended smart container to autonomously collect a plurality of the apparatus and to report status to a central monitor system.
A computer-implemented method includes producing medical information that characterizes a group of individuals from a set of private data representing pre or post-encounter characteristics of the individuals, wherein the individuals have had encounters with a healthcare facility. The identity of the individuals is unattainable from the produced medical information. The method also includes providing the produced medical information to report the pre or post-encounter characteristics of the group.
The present disclosure includes a method comprising encrypting sensitive data, generating a token comprising a data identifier, tokenizing the encrypted sensitive data, and/or storing the encrypted sensitive data in association with the token to a token vault. Tokenizing may comprise mapping the encrypted sensitive data to the token. The method may further comprise storing the token to a cloud application, wherein the cloud application comprises a software application that functions within a cloud computing environment.
A database security system protects a data table at both the column level and the individual data record level. Access to data records within the data table is governed by categories assigned to data records, by user roles assigned to users, and by a set of security access tables. A first access table maps data record identifiers to data record categories, data record protection schemes, and corresponding scheme keys. A second access table maps user roles to data record categories. A third access table maps column identifiers to column protection schemes and corresponding scheme keys. A fourth access table maps user roles to column identifiers. If a user requests access to a data record, the security access tables are queried using the data record identifier, the associated column identifier, and the user roles associated with the user to determine if the user can access the requested data record.
An encryption platform may identify language characters in database fields and determine which of multiple encoding schemes more efficiently encodes the language characters. The encryption platform may use the selected encoding scheme to encode plaintext into a byte array and then encrypt the byte array into ciphertext. The encryption platform may assign encoding flags to the ciphertext identifying the encoding scheme used for encoding the plaintext. The encryption platform then may use the encoding flag to determine which encoding schemes to use for decoding the data back into plaintext. Using the different encoding schemes allows encrypted data to fit better into database storage structures. The encryption platform also may enable users to select different fields for different selectable objects for encoding and encrypting.
A method and apparatus for performing an anti-virus scan of a file system. Intermediate scanning results are obtained for a file in the file system, prior to a scan of the file being completed. The intermediate scanning results are then stored in a database. The intermediate scanning results can be used to speed up subsequent scans, and to provide other useful information to an on-line anti-virus server. In a subsequent scan of the file system, a determination is made whether intermediate scanning results relating to the file are available in the database. If they are available for a particular type of intermediate scan, then a scan need not be performed for the file. If they are not, then the scan can be performed.
Provided are a control system and an authentication device capable of detecting abnormality of a development device for distributing a control program and of preventing destruction and tampering of the program caused by the abnormality. To solve the above problem, there is provided: a control device that controls a controlled object; a development device that manages a plurality of control programs executed by the control device and sends the predetermined control program and information accompanying the control program to the network; and an authentication device having an authentication list storing the information accompanying the control program in association with the control program. Upon receiving the control program and the information accompanying the control program from the development device, the authentication device performs authentication whether or not the development device is normal by checking the accompanying information received from the development device with the information stored in the authentication list.
The present invention is directed towards systems and methods of streaming an application from a remote location to a local machine system, and using local machine system resources in executing that application. In various embodiments, services needed by a streamed application may be started with high local system privileges in their own isolation environment. These service may be started, stopped, and otherwise managed by a Service Control Manager. In order for an application to both access services that operate at high local system privileges and the network so that it can access remotely stored, streaming, information; a streaming application may rely on privileges of the user when accessing network information rather than the higher privileges of the services running in isolation.
Disclosed are various embodiments for reducing privileges for imported software packages, such as software libraries. Trusted code is received that is configured to use untrusted code. A wrapper is generated for the untrusted code. The trusted code is reconfigured to use the wrapper. The wrapper is configured to invoke the untrusted code with reduced privileges as compared to the trusted code.
Techniques for a resource management advice service are provided. In some examples, resource management advice and/or instructions may be provided for use with mobile devices, mobile applications, cloud applications, and/or other web-based applications. For example a mobile client may request to perform one or more resource management operations associated with a service provider. Based at least in part on the requested operation and/or the particular service provider, advice and/or instructions for managing the resource may be provided.
A method automatically unlocks a portable terminal. The method includes collecting specific information by the portable terminal at a current location, and if the specific information satisfies a pre-set condition, automatically unlocking the terminal.
Confirming access for a user includes capturing an image of the user, capturing information on an identity badge worn by the user, and denying access to a resource in response to the information being inconsistent with the image. Confirming access for a user may also include denying access in response to the information being inconsistent additional information about the user stored in a database. The information may include a picture of the user. The resource may include access to an area. The resource may include access to a computer. Confirming access for a user may also include, following allowing access to the computer, periodically recapturing the image of the user and recapturing the information on the identity badge and denying access to the computer in response to the information being inconsistent with the image. The information may include a visual code that identifies the user.
As disclosed herein a method for enabling dynamic watermarking on a client includes determining a negotiated watermarking algorithm that identifies at least one location on a web page for a placed watermark, and initiating a web communication by requesting a web page. The method further includes receiving the web page, and verifying the authenticity of the web page using the negotiated watermarking algorithm. Also disclosed herein is a method for enabling dynamic watermarking on a server which includes determining a negotiated watermarking algorithm that identifies at least one location on a web page for a placed watermark, receiving a request for a web page from a client, and identifying the client. The method further includes creating the requested web page using the negotiated watermarking algorithm providing a generated web page, and providing the generated web page to the client. A computer program product is also disclosed herein.
Systems, methods, computer-readable storage mediums including computer-readable instructions and/or circuitry for generating deceptive indicia profiles may implement operations including, but not limited to: detecting one or more indicia of deception associated with one or more signals associated with communication content provided by a participant in a first communications interaction; detecting one or more indicia of deception associated with one or more signals associated with communications content provided by the participant in a second communications interaction; generating a deceptive indicia profile for the participant according to indicia of deception detected in the communications content provided by the participant in the first communications interaction and indicia of deception detected in the communications content provided by the participant in the second communications interaction; and providing a notification associated with the deceptive indicia profile for the participant to a second participant in a communications interaction with the participant.