An apparatus (e.g., an audio amplifier) includes a housing cover configured to be fitted to a heat sink for enclosing a circuit board therebetween. The apparatus also includes a contact member formed separately from and mounted to the housing cover to cause electrical components on the circuit board to engage with the heat sink when the housing cover is fastened to the heat sink. The contact member includes first and second projections connected to each other and configured such that displacement of the first projection in a first direction causes a proportional displacement of the second projection in a second direction opposite the first direction.
A microelectronic device includes a laminated mounting substrate including a die side and a land side with a surface finish layer disposed in a recess on the mounting substrate die side. An electrically conductive first plug is in contact with the surface finish layer and an electrically conductive subsequent plug is disposed on the mounting substrate land side and it is electrically coupled to the electrically conductive first plug and disposed directly below the electrically conductive first plug.
A thin portable electronic device with a display is described. The components of the electronic device can be arranged in stacked layers within an external housing where each of the stacked layers is located at a different height relative to the thickness of the device. One of the stacked layers can be internal metal frame. The internal metal frame can be configured to act as a heat spreader for heat generating components located in layers adjacent to the internal frame. Further, the internal metal frame can be configured to add to the overall structural stiffness of the device. In addition, the internal metal frame can be configured to provide attachment points for device components, such as the display, so that the device components can be coupled to the external housing via the internal metal frame.
An information handling system includes: an immersion server drawer (ISD) having: an impervious enclosure which holds a volume of dielectric cooling liquid within/at the enclosure bottom. The ISD is configured with dimensions that enable insertion of liquid-cooled servers within the enclosure bottom. A plurality of liquid-cooled servers can be placed in a side-by-side configuration along one dimension of the ISD, with one or more heat dissipating components of the servers being placed below a surface layer of the cooling liquid. Submerged components of the immersion server are liquid-cooled, while the other heat generating components above the liquid surface are air cooled by rising vapor generated by boiling and vaporization of the cooling liquid. The ISD is placed in an ISD cabinet, which is configured with an upper condenser that allows for multi-phase cooling of the electronic devices placed within the immersion server drawer. The ISD cabinet can be rack-mountable.
A wiring substrate is provided with a core substrate including a first main surface, a second main surface, and a through hole. An electronic component including a resin cover is arranged in the through hole. A projection projects from an inner wall of the through hole toward the resin cover of the electronic component. An insulator is filled between the inner wall of the through hole and the electronic component. A first insulation layer covers the electronic component and the first main surface. A second insulation layer covers the electronic component and the second main surface. The resin cover of the electronic component includes an engagement groove formed by the projection and extending along a direction in which the electronic component is fitted into the through hole.
There is provided a multilayered ceramic electronic component including a ceramic body having a hexahedral shape, including a dielectric layer, satisfying T/W>1.0 when a length thereof is L, a width thereof is W, and a thickness thereof is T, and having first and second main surfaces, first and second end surfaces, and first and second side surfaces, a plurality of first and second internal electrodes, and first and second external electrodes electrically connected to the first and second internal electrodes, wherein the first and second external electrodes are electrically connected to the exposed portions of the first and second internal electrodes, include first and second head parts formed on the first and second end surfaces, and first and second band parts formed on the first and second main surfaces, and are not formed on the first and second side surfaces.
An active component array includes a target substrate having one or more contacts formed on a side of the target substrate, and one or more printable active components distributed over the target substrate. Each active component includes an active layer having a top side and an opposing bottom side and one or more active element(s) formed on or in the top side of the active layer. The active element(s) are electrically connected to the contact(s), and the bottom side is adhered to the target substrate. Related fabrication methods are also discussed.
A client connection device for a UPS system includes a frame on which a main input distribution unit, a bypass input distribution unit, a battery distribution unit, and an output distribution unit are provided, in which the main input distribution unit and the bypass input distribution unit are arranged on the frame with being opposite to each other up and down, the output distribution unit and the battery distribution unit are arranged on the frame on different sides of the main input distribution unit and the bypass input distribution unit, and the battery distribution unit is side placed near the main input distribution unit and the bypass input distribution unit. A client connection device for a UPS system is provided which can be of a compact structure, be space saving, and be convenient for space operation.
There is provided a mounting adapter to be disposed between a socket and an electronic component when the electronic component is mounted with the socket. The mounting adapter includes a base having insulating property, a first electrode provided on a first surface of the base, the first surface facing the electronic component, the first electrode being to be in contact with an electric pad of the electronic component, a second electrode provided on a second surface of the base, the second electrode facing the socket, the second electrode being to be in contact with a conductor of the socket, and a through via that penetrates through the base and electrically connects the first electrode and the second electrode.
A ceramic substrate for an electronic part inspecting apparatus that can be manufactured in accordance with predetermined specifications, regardless of the number and location of pins required, relatively quickly and inexpensively is provided. In certain embodiments the ceramic substrate is configured to connect to a probe for inspecting an electronic component, and the ceramic substrate comprises a plurality of vias located in a center area of the ceramic substrate that penetrate through the ceramic substrate in its thicknesswise direction, pads located in an outer periphery that surrounds the center area where the vias are located, the pads being configured to connected to the probes, and a conductive layer located only over the front surface of the ceramic substrate and connects the vias to the respective pads. Certain embodiments comprise a greater number of vias than pins. A method of manufacturing the ceramic substrate is also provided.
A mounting device includes a chassis and a mounting member. The chassis includes a rear plate, a side plate connected to the rear plate, and a bracket located on the rear plate. The bracket includes a top wall and a mounting piece. The mounting member includes a pressing plate and a mounting plate. The mounting piece defines a mounting hole. The mounting member is located between the side plate and the mounting piece. A first end of the mounting plate is secured to the side plate. A second end of the mounting plate is engaged in the mounting hole. The pressing plate and the top wall are configured for sandwiching a mounting tab of an expansion card. The mounting plate is elastically deformable to press the pressing plate towards the top wall.
An electrical circuit with large creepage isolation distances is provided. In some embodiments, the electrical circuit is capable of increasing creepage isolation distances by many multiples over traditional electrical circuits. In one embodiment, an electrical circuit comprises a ground circuit optically coupled to a floating circuit, and an isolated circuit optically coupled to the floating circuit. The circuits can be optically coupled with opto-isolators, for example. The isolated circuit can have a creepage isolation distance at least twice as large as a traditional circuit. In some embodiments, “n” number of floating circuits can be optically coupled between the ground circuit and the isolated circuit to increase the total creepage isolation distance by a factor of “n”. Methods of use are also described.
EUVL light source systems and methods are provided. A laser or a high-voltage-discharge device is used to excite EUV light source material to generate EUV light along with droplets flying out of the EUV light source material. A collector is positioned to guide the EUV light into a desired direction. A cooling assembly is configured to wrap around the collector along the EUV light in the desired direction. At least a first portion of the plurality of molten droplets reaches and condenses on a surface of the cooling assembly.
A LED light for replacing a fluorescent light in a fluorescent fixture is disclosed. The LED light is compatible with the existing fluorescent light fixture and ballast. The LED light includes a failure indicator to show whether a failure of the LED light is due to a failure of the ballast or a problem within the light. The LED light includes a color change mechanism, which may be controlled by an electromagnetic field or an input current to the LED light, thus making it compatible with current dimmer systems.
A configurable light emitting diode (LED) driver for powering a set of light fixture loads comprising a power circuit which includes an inrush current limit and a DC/DC convertor, a power factor correction (PFC) boost connected to the inrush current limit and the DC/DC converter, a regulated output voltage bus connected to the DC/DC converter, and a primary digital controller for controlling the power circuit. The driver further includes a set of output current drivers, each of the set of output current drivers connected to one of the set of light fixture loads for powering the associated light fixture load. The driver also includes an apparatus for configuring the set of output current drivers to an output current set point and at least one power limit connected to the regulated output voltage bus.
This invention is about crimping-fixed, remotely regulated electric heater, which includes a heater tube body to hold the heating elements of PTC and heat sinks that are attached to the heater tube. The heater tube is a long strip-shaped metal tube and has flanges attached to the upper surface and lower sides of this metal tube that forms grooves at the corner between these flanges and the upper/lower surface of the metal tube body. Inside the metal tube is a cavity to hold the PTC heating element with insulation layers are applied in the cavity. Heat sink is first placed on the left and right side of the heater tube, the flanges are folded to clamp the heat sink firmly to the heater tube.
A method for facilitating in-device coexistence between wireless communication technologies on a wireless communication device is provided. The method can include transmitting data traffic from the wireless communication device via an aggressor wireless communication technology; determining occurrence of an in-device interference condition resulting from transmission of the data traffic via the aggressor wireless communication technology interfering with concurrent data reception by the wireless communication device via a victim wireless communication technology; and reducing a bit rate of the data traffic transmitted via the aggressor wireless communication technology in response to the in-device interference condition.
Electronic devices may have multiple wireless integrated circuits such as first and second baseband processor integrated circuits. The first baseband processors may be used exclusively for handling packet switched traffic, whereas the second baseband processor may be used exclusively for handling circuit switched traffic. Radio-frequency front end circuitry may be used to couple multiple antennas to the baseband processors and associated radio-frequency transceivers. The first baseband processor may be coupled to a first universal integrated circuit card (UICC) storing a first subscriber profile, whereas the second baseband processor may be coupled to a second UICC storing a second subscriber profile. The first baseband processor may be used to support any desired circuit switched radio access technology, whereas the second baseband processor may be used to support any desired packet switched radio access technology.
An unmanned aerial vehicle (UAV) includes at least one passive reflective device having an elongated configuration defining a long axis and comprising a material configured to reflect radio signals. The UAV also includes a control system configured to control the UAV along a flight path that orients the at least one passive reflective device such that the long axis remains substantially tangential to an ellipsoid whose foci are at two points between which radio communication is desired.
In one embodiment, a wireless base station, receives a random access preamble from a wireless device that is not authorized to utilize the wireless base station, the random access preamble indicating that the wireless device suffers interference from the wireless base station. The wireless base station sends a random access response to the wireless device; receives an interference stress message from the wireless device; and reduces interference for the wireless device.
A network management unit included in a base station of WRAN, and a heterogeneous-systems coexistence function unit included in a relay station perform communications by taking advantage of the wireless line of WRAN. In this way, the network management unit and the heterogeneous-systems coexistence function unit make the determination and management of a frequency channel to be utilized by WLAN. Concretely, the QP (Quiet Period) of WRAN and that of WLAN are synchronized with each other with respect to the above-described frequency channel. During the synchronized QPs, WRAN and WLAN make the absence confirmation of a primary user.
Methods are provided that optimize Voice over Adaptive Multi-user channels on One Slot (VAMOS) communications by recognizing that up to four independent communications are located on the same device, and assigning them to sub-channels of the same VAMOS channel. A VAMOS-capable multi-SIM wireless device such as a dual-SIM dual active (DSDA) device may have up to four simultaneous active calls on the same access network. When assigned to the same VAMOS channel, the up to four active calls may be merged to all use the same radio on the device.
An apparatus, method, and system for filtering an Internet Protocol (IP) packet in a mobile communication terminal are provided. The method includes receiving an IP packet from a network, determining whether the received IP packet is an IP packet unallowable by an application Central Processing Unit (CPU), and when the received IP packet is determined to be an IP packet unallowable by the application CPU, generating an IP packet indicating that the received IP packet is unallowable and transmitting the generated IP packet to the network.
In order to simultaneously perform frequency resource sensing and data transmission, a pico base station (BS) within the coverage of a macro BS may determine the number of antennas for frequency band sensing and/or the number of antennas for data transmission and reception from among a plurality of antennas of the pico BS. The pico BS may also determine the duration of the frequency band sensing in a radio frame. The pico BS could then perform frequency band sensing, for the determined duration, or data transmission and reception according to the determined number of antennas for frequency band sensing and/or the determined number of antennas for data transmission. The duration of frequency band sensing and the number of antennas for frequency band sensing and data transmission may be determined based on the data throughput of the pico BS.
An inter-cell interference coordination method and apparatus is provided for a heterogeneous network system based on Orthogonal Frequency Division Multiplexing (OFMD) communication. The inter-cell interference coordination method and apparatus exchanges two different types of inter-cell interference coordination messages between base stations to adaptively use the frequency division and time division schemes, thereby coordinating inter-cell interference of control channels transmitted randomly in distributed manner.
An apparatus configured to determine one or more channels available for use by respective one or more white-space devices in a particular determined geographical location. The apparatus is configured to: receive geographic location signalling associated with the particular determined geographical location of one or more white-space devices; receive uncertainty indication signalling for the uncertainty associated with the particular determined geographic location of the one or more white-space devices; and determine the one or more channels available for use by the respective one or more white-space devices in the particular determined geographical location by using the geographic location signalling and uncertainty indication signalling.
A method and apparatus for coexistence among wireless transmit/receive units (WTRUs) operating in the same spectrum are disclosed. A WTRU includes a memory, a receive unit, a transmit unit and a control unit. The memory stores coexistence gap patterns. Each of the coexistence gap patterns defines a pattern of transmission periods and silent periods for the WTRU and corresponds to a respective duty cycle. The receive unit receives from a base station information regarding a duty cycle for a wireless cell operated by the base station. The control unit selects one of the coexistence gap patterns based on the received information regarding the duty cycle for the wireless cell and controls the transmit unit to transmit information during the transmission periods and not transmit information during the silent periods of the selected one of the plurality of coexistence gap patterns.
An apparatus and a method are provided for receiving data in a communication system. Information is received representative of a number of processes of a persistent resource allocation and a persistent resource allocation interval. Data is received in a new transmission based on the received information. A HARQ process ID is calculated using the number of processes of the persistent resource allocation, the persistent resource allocation interval, and time information. Control information including the HARQ process ID is received. Data is received in a retransmission, based on the control information including the HARQ process ID. The data received in the new transmission and the data received in the retransmission are combined. The combined data is decoded.
Transmission of data from a portable communication device to a base station via a radio frequency signal uses a plurality of modulation and coding schemes and a protocol that has recurring frames. Each frame has a plurality of transmission slots, different numbers of which can be used to transmit data. When it is desired to transmit data, a higher rate than was used previously, an attempt is made to increase the number transmission slots being used. If doing so, produces a transmission results in a specific absorption rate limit being exceeded, then the modulation and coding scheme is changed to one having a greater data coding rate. The power level and the number transmission slots then are set so that the data transmission does not exceed the specific absorption rate limit. The data is then transmitted by the portable communication device.
A radio communication apparatus includes: a first communication unit having a first communication coverage including a short-distance portion and a long-distance portion; a second communication unit having a second communication coverage including at least the long-distance portion; a reception detecting unit detecting that a short-distance communication request transmitted from a first communication unit of an other communication apparatus has been received by at least one of the first and second communication units; a determining unit permitting the request when the request is received by the first communication unit and not received by the second communication unit, and rejecting the request when the request is received by the second communication unit; and a communication processing unit carrying out short-distance communication with the other communication apparatus via the first communication unit when the request is permitted.
A hybrid access protocol (HAP) controls access of nodes of a network to a communication medium, such as a radio frequency communication channel. In one example, a one-hop neighbor of a root node receives priority information from the root node, which includes a list of communication time slots, and an indication of one or more of the communication time slots during which the one-hop neighbor has communication priority relative to other one-hop neighbors of the root node. If the one-hop neighbor has information to transmit to the root node, it waits a predetermined period of time before transmitting the information to the root node. While waiting, the one-hop neighbor listens for transmissions by other nodes. In response to expiration of the predetermined period of time without overhearing transmissions by other nodes, the one-hop neighbor transmits its data to the root node.
A base station 1 includes a radio communication unit 11 and a frequency channel control unit 15. The radio communication unit 11 is capable of forming a primary cell and a secondary cell, and transmitting a physical channel for data transmission (HS-PDSCH) in each of these two cells. Further, the frequency channel control unit 15 determines a frequency channel available to the secondary cell based on the load status of a nearby cell formed by a nearby base station 7. In this way, the interference to the nearby cell caused by the base station 1 is suppressed.
A method, an apparatus, and a system for paging processing and information displaying are disclosed. The paging processing method includes: receiving a paging request message from a Mobile Switching Center (MSC) which a called User Equipment (UE) registers to; and when the called UE is connected, sending a paging notification message to the called UE, and returning a called-UE paging status message to the MSC. In the embodiments of the present invention, after the Mobility Management Entity (MME) receives the paging request message from the MSC, if the called UE is connected, the MME not only sends a Circuit-Switched (CS) paging notification message to the called UE, but also returns a paging status message to the MSC, indicating that the called UE has received the paging notification message.
A method and apparatus are provided that may enable the provision of machine to machine (M2M) communication in a wireless network environment. In this regard, for example, relatively low power devices (specifically referencing low transmission power) such as sensors or other machines in an M2M system may be enabled to communicate with a mobile terminal via a first carrier when the power ratio between the average received machine power and the average downlink received cellular power is below a threshold value and communicate with the mobile terminal via a second carrier if the power ratio exceeds the threshold value. Thus, only one carrier may be needed by devices in such an environment in order to perform M2M communication.
Disclosed herein is a simplified EMO linkage circuit that enables add-on equipment without retrofit, and eliminates the need for multi-contact EMO switches.
A wireless communications circuit includes: a transceiver; a power amplifier module including a plurality of power amplifiers coupled to the transceiver; a filter module, including a plurality of filters coupled to the power amplifier module; an antenna switching module coupled between the filter module and an antenna; a tunable matching network coupled between the antenna and the antenna switching module; and a baseband circuit coupled to the tunable matching network. The baseband circuit is used for generating a control signal to the tunable matching network to adjust an impedance of the tunable matching network, wherein the impedance of the tunable matching network is adjusted to be different values under different operating conditions of the wireless communications circuit.
Target wake time (TWT) within single user, multiple user, multiple access, and/or MIMO wireless communications. Within communication systems including different respective devices therein (e.g., wireless stations (STAs), smart meter stations (SMSTAs), etc.), coordination is made with respect to those devices awakening from less than full power state (e.g., from sleep, reduce functionality, power saving state, etc.). A TWT information element (IE) may be included within a frame or a signal corresponding to or based on that frame that is transmitted from one device to other device(s). One or more respective future targeted times (e.g., which may be based on a timing synchronization function (TSF) reference time) at which device(s) may awaken from less than full power state may be included within the TWT IE. Over time, different respective TWT IEs may be provided from various devices, such that respective targeted awake times may be modified dynamically for any given device.
Methods and apparatus for network searching are disclosed. An example method is performed by a mobile device related to public land mobile network (PLMN) selection, the method comprising registering with a visited PLMN, determining whether a priority search inhibit list includes a cell global identity of a serving cell, dependent at least in part on determining that the priority search inhibit list does not include the cell global identity of the serving cell and dependent at least in part on a priority search period, searching for a second PLMN having a higher priority than the visited PLMN, and dependent at least in part on the searching being unsuccessful, adding the cell global identity of the serving cell to the priority search inhibit list.
A method includes receiving a silence command at a location tracking device, where the silence command instructs the location tracking device to stop wireless transmissions. The method also includes stopping wireless transmissions from the location tracking device for a specified period of time in response to the silence command. The method further includes automatically resuming wireless transmissions from the location tracking device after the specified period of time has elapsed. A length of the specified period of time can be defined by the silence command. A request to identify the location tracking device can be received at the location tracking device, and a response identifying the location tracking device can be transmitted prior to receiving the silence command.
Methods, systems, and computer readable media for the automatic transfer of mobile calls between wireless packet switched (PS) and guaranteed service (GS) networks based on quality of service (QoS) measurements are disclosed. One method includes establishing a call over the PS or GS network. The method may further include monitoring a quality of service (QoS) parameter associated with the PS network, and comparing the QoS parameter to a minimum quality threshold. The method may further include receiving instructions to initiate a call transfer based upon the comparison of the QoS parameter to the minimum quality threshold.
In accordance with an example embodiment of the present invention, a method comprises receiving at a first network node an inter-radio access technology (RAT) signaling message from a source node, a handover signaling message including inter-RAT handover information including a START packet switched (START PS) value; determining whether the START PS value is reliable prior to handing over to a second network node at least based in part on the source node from which the START PS value is received and inter-RAT handover information reliability indicator; building an inter-RAT handover information reliability indicator to indicate whether the START PS value is reliable and including the inter-RAT handover info reliability indicator in a second signaling message; and forwarding the second signaling message to the second network node.
A method where a first type location area of a mobile node is registered to a first mobility management node. A second type location area is determined based on a location of the mobile node. A second type location area of the mobile node is registered to a second mobility management node of a second system. A request to perform user plane bearer establishment through the second system is received. Thereupon, radio measurements associated with at least two candidate cells are obtained from the mobile node. Candidate cells are searched to find at least one cell associated with the second type location area. A cell is selected among the at least one cell, which is indicated to the selected cell to the mobile node. A handover request is provided to the mobile node.
Various embodiments are described to assist in reducing handoff delays and the blackout period(s) associated with inter AN (access network) hard handoffs. The hard handoff procedure of method disclosed herein establishes or initiates a connection (A10-type connection) between a target AN and a packet data serving node (PDSN), unlike known hard handoff approaches that wait until traffic channel assignment to establish or initiate such connection. The PDSN may optionally bicast data packets to both the source and target ANs since each is communicatively coupled to the PDSN during a given time period. In the event bicasting is unavailable or unused, a communication tunnel between the source and target ANs may be created and used to transmit data packets between them.
A method and system for wireless communication with a mobile device in which wireless communication is established with the mobile device. A base station is used to transmit directly to the mobile device in a downlink direction. A relay node is used to transmit to the base station communications received in an uplink direction from the mobile station. The relay node relays at least a portion of the uplink traffic received from the mobile station to the base station.
A system and methodology that facilitates signaling-less call setup and teardown by employing observed Quality of Experience (QoE) and resource demands is provided. Moreover, the system provides an environment for supersonic treatment of observed QoE and Quality of Service (QoS) demands for mobile applications. Specifically, a monitoring component is employed to determine session state information associated with a traffic flow, which includes observed QoE and resource demand data. The session state information is stored in a shared memory location and can be analyzed to modify and/or create a network policy for the traffic flow. The network policy is applied to one or more traffic flows to minimize signaling exchanges between a communication network and a mobile station.
Session recovery after network coordinator or AP restart for single user, multiple user, multiple access, and/or MIMO wireless communications. Restart or reset of a network coordinator (e.g., an access point (AP) or other network coordinator type device) may occur for various reasons (e.g., a power cycle or power failure, inadequate failover protection, scheduled or planned power outages such as for including network maintenance, software upgrades, etc.). Upon determination of network coordinator restarted or reset, a singular bit within a communication from the network coordinator indicates synchronization or not of the its timing synchronization function (TSF) (e.g., with other devices in the communication system, such as wireless stations (STAs), smart meter stations (SMSTAs), etc.). A given device (e.g., STA, SMSTA, etc.) can provide its current TSF to the network coordinator so that it can resynchronize, re-establish its scheduled for wake times of those devices (e.g., target wake times (TWTs)), etc.
A method and corresponding system for managing how long a UE will wait before attempting to be served by a RAN, such as before the UE searches for coverage of the RAN and determines whether the RAN supports providing a particular service. The method may apply in a scenario where the RAN is normally configured to provide the particular service but from time to time may lack support for providing that service. As disclosed, a network entity may evaluate past instances of the RAN lacking support for providing the service, and may thereby estimate a typical (e.g., average) duration for such lack of support. Based on that estimate, the network entity may then provide the UE with an indication of how long the UE should wait before the UE attempts to be served by the RAN, and the UE may responsively wait for that time period.
Technology is discussed for capturing performance measurements from Wireless Wide Area Network (WWAN) transmission points and Wireless Local Area Network (WLAN) Access Points (AP). The performance measurements can provide information about the interworking a WWAN and one or more WLANs that can be used to offload traffic from the WWAN. Also, an illustrative example of the collection of performance measurements at a WWAN is explained. Furthermore, the correlation, analysis, and general harnessing of performance measurements to optimize and/or maintain combinations between a WWAN and one or more WLANs is discussed, among other topics.
[Problem] To provide a wireless station, a determination apparatus, a wireless communication system, a determination method, and a storage medium which can carry out appropriate interference causing control in a secondary system adaptively to an actual environment with no change in a configuration of a primary system.[Means to solve the problem] A wireless station includes a determination means to determine at least one monitoring station measuring a wireless signal, which is transmitted by the wireless station and which causes interference to another system, out of plural wireless stations of a wireless communication system to which the wireless station belongs.
The present invention is to provide base station apparatuses and mobile station apparatuses suitable for a configuration of a distributed wireless communications system, configure the distributed wireless communications system, and provide a pilot channel generation method and synchronization generation method suitable for the distributed wireless communications system. Provided are a control signal generating section 13 which generates a plurality of mutually different first pilot signals and a second pilot signal based on control data input from the core network apparatus CN constituting the distributed wireless communications system, combines the first pilot signals and the second pilot signal, and thereby generates specific pilot channels for each of radio access unit apparatuses, and a transmitting section 10 that transmits the specific pilot channels respectively to the radio access unit apparatuses.
A terminal (1) for use with a cellular or mobile telecommunications network (3) includes authentication means (15) such as a SIM, USIM, UICC etc. for authenticating the terminal with the network. The terminal further includes a normal execution environment (30) and a secure execution environment (34). An interface controller (46) is provided in the secure execution environment and intercepts all communications directed to the authentication means to control access to the authentication means by these communications.
An improved technique involves employing knowledge based authentication (KBA) to validate a user trying to reissue a SIM card. Along these lines, when a user goes to a mobile device vendor and requests a reissue of a SIM card, the vendor relays that request to an authentication server which in turn sends KBA questions to the user. The KBA questions are based on data available to the mobile carrier to which the genuine subscriber subscribes. Such data concerns information including calls made and received, amount of minutes and data used in a month, and amount billed in particular months. The vendor honors or denies the request to reissue the SIM card based on the answers submitted by the user to the authentication server.
Systems and methodologies are described that facilitate indicating global cell identifier (GCI) reporting in wireless communication to mitigate confusion caused by physical cell identifier (PCI) reporting in heterogeneous deployments. In particular, mobile devices can report GCI of access points to disparate access points to facilitate communication therebetween, such as during handover. Mobile devices can indicate GCI reporting during a system access request by selecting an access sequence corresponding to subsequent GCI reporting. Based on the access sequence, an access point can grant additional resources to receive the GCI, and the mobile device can communicate GCI over the resources. Using the GCI, the access point can communicate with a disparate access point related to the GCI.
Provided a method and an apparatus for setting control information of a user equipment in a wireless communication system. The method and the apparatus determine control information for network access of the user equipment, allows the network access according to the control information to provide a network service to the user equipment. The wireless communication system can uniformly maintain a service quality for a plurality of UEs.
Methods, devices, and computer program products for transmitting and receiving discovery and paging messages in a wireless communication device are described herein. In one aspect, a wireless apparatus operable in a wireless communication system includes a discovery engine configured to communicate with a wireless network based on a profile, the profile having defined use parameters, the discovery engine being configured to receive an input from an application indicating a selection of a profile, the discovery engine further configured to receive one or more attributes from the application and configure the profile using the one or more attributes, the attributes containing information to configure the profile to perform certain functions as defined by the application.
A method of cross-platform messaging including receiving, by a messaging system, at least one initial message having a message format, an initial message layout and data indicative of at least one user associated with the at least one initial message, and before delivery to a destination communication device associated with the at least one user, converting, by the messaging system, an initial message into an adapted message, and facilitating, by the messaging system, delivery of the adapted message to the destination communication device. The adapted message is characterized by, at least, an adapted message layout, and the adapted message layout differs from the initial message layout in a characteristic associated with respective message layout such as number of media objects, a graphical image of a media object, a size of a placeholder related to a media object, and a location of a media object within a respective message layout.
The present invention relates to mobile communication technologies, and discloses a method and an apparatus for registration, communication, and handover of a Mobile Node (MN). The present invention is intended to overcome the bottlenecks of data traffic and processing capability in the home network in the prior art. A distributed mobility management system is provided herein. The system includes at least two Mobility Management Anchors (MMAs): any two MMAs are interconnected; at least one terminal exists in each MMA connection; each MMA stores a terminal binding relationship table; and the terminal binding relationship table records identifiers (IDs) and Internet Protocol (IP) addresses of terminals. The distributed mobility management system under the present invention can balance load, improve the data processing capability, simplify the signaling interaction in various procedures, and improve the system processing capability.
Credit card transaction authorization is performed using ad-hoc, short-range wireless links to obtain item identification information from items that include ad-hoc short range wireless link transmitters and that are carried by a user who is associated with a prospective credit card transaction. Authorization information for the prospective credit card transaction is generated based on the item identification information that was obtained. Location information for a wireless terminal that is associated with the user and/or Internet Protocol (IP) address information for a transaction terminal that is associated with the transaction may also be used. Related systems, devices and computer program products are also described.
A method for establishing a pairing between a hazard detector and an online account may include instantiating an application on a mobile computing device and receiving a first code from a central server. The application may receive a second code from printed material associated with the hazard detector. The hazard detector may broadcast a Wi-Fi access point, and the application may join the Wi-Fi access point. The application can be authenticated by the hazard detector using the second code, and the application can receive an identity of a home Wi-Fi network from a user. The application can then transmit the identity of the home Wi-Fi network to the hazard detector. The hazard detector can use the home Wi-Fi network to access the Internet and transmit the first code to the central server, where the central server can use the first code in completing the pairing process.
A method for restoring faulty subscriber-related data in an Evolved Packet System (EPS) network including a Home Subscriber Server (HSS) and a 3GPP AAA server, be characterized by comprising the following steps performed at the 3GPP AAA server: receiving an indicator from the HSS, the indicator identifying one or more subscribers having the faulty subscriber-related data stored in the HSS; and for an interaction with an access from a non-3GPP network, if the access corresponding to one of the identified subscribers, instructing the HSS to restore the faulty subscriber-related data for one or all of the identified subscribers.
Systems and methods of providing location information associated with moveable objects include receiving tag identification (ID) information reports from a plurality of tag sensors. A movable object associated with each of the ID information reports received from the tag sensors is identified. Location information associated with the movable objects is updated responsive to the received ID information reports to provide updated location information for the moveable objects and an owner associated with each of the movable objects is determined. Access to the location information associated with respective ones of the movable objects is allowed only to requestors authorized by the owner associated with the respective ones of the movable objects, wherein the tag sensors have not been provided notification of ID information associated with the movable objects or of the owners associated with the moveable objects.
The disclosure discloses a language setting method for mobile terminal and mobile terminal, wherein the method includes: the mobile terminal acquires the language used by the current location of the mobile terminal; and the mobile terminal sets the acquired language as the current default language of the mobile terminal. The disclosure achieves the effect of improving the user experience.
A description of a user is estimated based on the context of the user's travel pattern. A disclosed data-processing system continually receives data points originating from the user's cell phone, for example, wherein each data point represents a visit by the user to a particular geolocation, at a particular time. The system then partitions the received data points into groups, wherein the groups represent the different places that the user has visited. The system counts how many data points are in each group. Based on the number of data points in each group, as well as the number of groups, the system then determines the entropy of the received data points that correspond to the particular user, which is also regarded as the entropy of the user's travel pattern. The data-processing system then estimates a user description for the user, based at least in part on the determined user entropy.
An audio signal transmission device includes a first light source and a second light source configured to emit a first wavelength of light and a second wavelength of light, respectively. The first detector and the second detector are configured to receive the first wavelength of light and the second wavelength of light, respectively. A transducer electrically coupled to the detectors is configured to vibrate at least one of an eardrum or ossicle in response to the first wavelength of light and the second wavelength of light. The first detector and second detector can be coupled to the transducer with opposite polarity, such that the transducer is configured to move with a first movement in response to the first wavelength and move with a second movement in response to the second wavelength, in which the second movement opposes the first movement.
An external component including a vibratory portion configured to vibrate in response to a sound signal to evoke a hearing percept via bone conduction and including a coupling portion configured to removably attach the external component to an outer surface of skin of a recipient of the hearing prosthesis while imparting deformation to the skin of the recipient at a location of the attachment, in a one-gravity environment, of an amount that is about equal to or equal to that which results from the external component having mass.
A hearing aid system (100) comprises a hearing aid (102) and an external device (101). The hearing aid (102) has link means for providing a wireless link with the external device (101), memory means for storing a hearing aid variable and signal processing means for initiating the logging in response to a trigger signal received from the external device (101) The external device (102) has link means (107) for providing the wireless link with the hearing aid (102), an input transducer (103) for providing an electrical audio signal, memory means (105) for storing a sample of the electrical audio signal, user input means (106) and signal processing means (104) configured for initiating the recording of the electrical audio signal sample and for initiating the transmission of the trigger signal to the hearing aid (102) in response to an activation of the user input means (106). The invention further provides a method of fitting a hearing aid system (100).
An electroacoustic transducer for converting electrical input signals into acoustic output signals includes a diaphragm adapted to move relative to a housing in response to the electrical input signals to produce the acoustic output signals, a displacement sensor, a bias voltage source, and an amplifier. The displacement sensor includes a first electrode adhered to the diaphragm and a second electrode on a first surface of the housing located proximate to the first electrode. A capacitance between the first electrode and the second electrode varies with a displacement of the diaphragm relative to the housing. The bias voltage source is coupled to at least one of the first electrode or the second electrode and provides a fixed charge to the electrode to which it is attached. The amplifier amplifies a change in voltage between the first and second electrodes to produce an output voltage between first and second signal outputs.
A horn loudspeaker with gain shading. The horn loudspeaker includes an acoustic horn. The acoustic horn includes side walls, for determining the horizontal dispersion angle of the acoustic horn, top and bottom walls, for determining the vertical dispersion angle of the acoustic horn, and a plurality of acoustic drivers coupled to the acoustic horn by a diffraction slot having segments. Each of the segments is separated from the adjacent segments by less than one half of the wavelength of the highest frequency of the operational range of the horn loudspeaker. The horn loudspeaker further includes circuitry for transmitting an audio signal to the plurality of acoustic drivers, the circuitry comprising a first signal attenuation element electrically coupling an audio signal input element and a first of the acoustic drivers.
A spatial sound energy (SSE) distribution control apparatus calculates filter coefficients for controlling distribution of the sound energy of an input signal, in consideration of a sound energy ratio between a reduction region for reducing transmission of a sound energy emitted through an array speaker and a concentration region for concentrating transmission of the sound energy and also in consideration of a sound energy efficiency of the concentration region. Also, the SSE distribution control apparatus determines an array size of a speaker in a case where the sound energy ratio is maximized, according to frequency variation of the input signal.
A system (10) for beamforming using a microphone array, the system (10) comprising: a beamformer consisting of two parallel adaptive filters (12, 13), a first adaptive filter (12) having low speech distortion (LS) and a second adaptive filter (13) having high noise suppression (SNR); and a controller (14) to determine a weight (θ) to adjust a percentage of combining the adaptive filters (12, 13) and to apply the weight to the adaptive filters (12, 13) for an output (15) of the beamformer.
An embodiment of the present invention provides an apparatus, comprising, a transceiver adapted for low-latency video transmissions over mmWave communications by using a slice alignment indication field in an audio/video protocol adaptation layer (A/V PAL) packet header to indicate whether a payload is aligned at a slice boundary and thus does not need parsing at a sink.
A network device may receive a signal from a headend, wherein a bandwidth of the received signal spans from a low frequency to a high frequency and encompasses a plurality of sub-bands. The network device may determine, based on communication with the headend, whether one of more of the sub-bands residing above a threshold frequency are available for carrying downstream data from the headend to the circuitry. The network device may digitize the signal using an ADC operating at a sampling frequency. The sampling frequency may be configured based on a result of the determining. When the sub-band(s) are available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively high frequency. When the sub-band(s) are not available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively low frequency.
A method for demapping a multicarrier signal into soft bits by a receiver, comprises the steps of: calculating signal to noise ratio (“SNR”) adjustment factors (“A[segidx]”) for segments of the signal, wherein each of the segments has a predefined number of subcarriers of the signal; generating an adjusted SNR (“SNR[segidx]”) as a function of an average SNR over the subcarriers of the signal and of the calculated SNR adjustment factors; and determining the soft bits for the signal as a function of the signal, a channel estimation for the signal, and the adjusted SNR, wherein the receiver decodes the determined soft bits.
A method of processing a digital television (DTV) signal in a DTV receiver, the method includes receiving a digital television signal including a plurality of extended text table (ETT) instances that appear in transport stream packets with common PID values, the ETT instances having common table ID values, each ETT instance comprising a section header and a message body, the section header containing a table identification (ID) extension field that serves to establish uniqueness of each ETT instance, the message body containing an extended text message (ETM) which provides detailed descriptions of a virtual channel or an event associated with each ETT instance, wherein the section header further contains a protocol version field indicating a protocol version and a private indicator field indicating a private indicator, demodulating the digital television signal and identifying at least one pertinent ETT instance from the plurality of ETT instances.
A moving image distribution server for distributing to a reproducing apparatus moving image data including video data and audio data and capable of prescribing decoding times and reproducing times for the video data and the audio data, the moving image distribution server including a data storage unit for storing in advance the moving image data including information as to the decoding times and the reproducing times for the video data and the audio data, a phase adjustment variable storage unit for storing a predetermined phase adjustment variable, and a first rewriter for reading the moving image data stored in the data storage unit, and changing the information included therein as to the decoding times or the reproducing times based on the predetermined phase adjustment variable to adjust the phase relationship between the video data and the audio data.
Embodiments of a method and system for inter-prediction in decoding video data are described herein. In various embodiments, a high-compression-ratio codec (such as H.264) is part of the encoding scheme for the video data. Embodiments pre-process control maps that were generated from encoded video data, and generating intermediate control maps comprising information regarding decoding the video data. The control maps indicate which units of video data in a frame are to be processed using an inter-prediction operation. In an embodiment, inter-prediction is performed on a frame basis such that inter-prediction is performed on an entire frame at one time. In other embodiments, processing of different frames is interleaved. Embodiments increase the efficiency of the inter-prediction such as to allow decoding of high-compression-ratio encoded video data on personal computers or comparable equipment without special, additional decoding hardware.
Disclosed are a method and apparatus for encoding a video, and a method and apparatus for decoding a video, in which neighboring pixels used to perform intra prediction on a current block to be encoded are filtered and intra prediction is performed by using the filtered neighboring pixels.
Given an input progressive sequence, a video encoder creates a dual-layer stream that combines a backwards-compatible interlaced video stream layer with an enhancement layer to reconstruct full-resolution progressive video. Given two consecutive frames in the input progressive sequence, vertical processing generates a top field-bottom field (TFBF) frame in a base layer (BL) TFBF sequence, and horizontal processing generates a side-by-side (SBS) frame in an enhancement layer (EL) SBS video sequence. The BL TFBF and the EL SBS sequences are compressed together to create a coded, backwards compatible output stream.
A display device includes a display unit including a plurality of pixels connected to a plurality of scan lines and a plurality of data lines, an inverse image processor configured to receive a first image data signal input from an external source and to generate a gray-inverted second image data signal, a controller configured to mix the first image data signal and the second image data signal alternately for each frame to generate a third image data signal, and to generate a driving control signal opening and closing a pair of shutter spectacles for each image frame displayed in the display unit, and a data driver configured to receive the third image data signal from the controller and to apply a corresponding data voltage to each of the plurality of data lines.
A stereoscopic image display device and a driving method thereof are disclosed. According to one aspect, the device includes a scan driver and a data driver configured to transmit scan signals and data signals to scan lines and data lines respectively, a light emission driver configured to transmit light emission control signals to light emission control lines, and a display unit divided into pixel areas including pixel lines. A controller is configured to control the drivers, generate a left-eye and right-eye image data signals, and supply the generated signals to the data driver. The light emission driver includes light emitting circuits configured to sequentially transmit light emission control signals that are equivalent to each other to light emission control lines of the corresponding pixel area.
To emulate the 3D visual acuity of an individual track-walker, matched pairs of cameras (which simulate our human eyes) are mounted on a moving vehicle above the tracks. The cameras are mounted both transversely and longitudinally, to create 3D images in two orthogonal orientations, which helps to eliminate visual voids. The location and orientation of each pair of cameras is determined by its specific task, in the present case: (i) to examine each left or right rail for anomalies (two pairs), and (ii) to examine every tie for damage (at least one pair). The camera pairs enable measurements such as defect depth and track width variations. The images are compressed in real time for local storage or high-speed transmission for remote display. The basic arrangement of cameras can be amplified or modified as necessary to circumstances.
The present invention relates to a playback device, a playback method, and a program, which enable a 3D content to be played by determining which stream of a basic stream and an extended stream is a left image stream in the event of displaying a 3D image for example. In the event that the value of view_type is 0, of the data stored in a DPB 151, data obtained by decoding a Base view video packet which is identified by PID=0 is output to an L video plane generating unit 161. The value 0 of the vie and w_type represents that a Base view video stream is an L view stream. In this case, data obtained by decoding a Dependent view video packet which is identified by a PID other than 0 is output to an R video plane generating unit 162. The present invention can be applied to a playback device compatible with the BD-ROM standard.
An exemplary embodiment provides a program for controlling a display capable of providing stereoscopic display. The program includes image output instructions for outputting an image for left eye and an image for right eye to the display, parallax calculation instructions for calculating parallax produced when an object is displayed on the display, and movement-and-display instructions for carrying out at least one of movement of a displayed object out of an effective display range and movement of a not-displayed object into the effective display range in accordance with the calculated parallax.
A data processing apparatus includes a text acquisition mechanism acquiring texts to be used as keywords which will be subject to audio retrieval, the texts being related to contents corresponding to contents data including image data and audio data; a keyword acquisition mechanism acquiring the keywords from the texts; an audio retrieval mechanism retrieving utterance of the keywords from the audio data of the contents data and acquiring timing information representing the timing of the utterance of the keywords of which the utterance is retrieved; and a playback control mechanism generating, from image data around the time represented by the timing information, representation image data of a representation image which will be displayed together with the keywords and performing playback control of displaying the representation image corresponding to the representation image data together with the keywords which are uttered at the time represented by the timing information.
A mobile terminal includes: a display module formed to output image information to one surface thereof; a window covering one surface of the display module; and a bonding member formed on an upper surface of the display module to bond the window to the display module, wherein the bonding member extends from the upper surface of the display module to one point of a rear surface the display module through a lateral surface of the display module to integrally fix a liquid crystal display (LCD) panel and a backlight module installed in the display module, and the display module is disposed between a rear surface of the window and a case forming the exterior of a terminal body.
A method of color processing determines whether a pixel color is within at least one range of predetermined colors corresponding to a viewer expected color. If so, the method altering the pixel color to better approximate the viewer expected color. For detection of skin tones determining whether the pixel color is within a range of predetermined colors includes discounting an illuminant of the pixel color. The viewer expected colors are preferably skin tone, grass green and sky blue. The saturation level of grass green and sky blue are enhanced and that of skin tones are suppressed. The saturation s is limited based upon lightness J and hue h to convert to an allowable RGB color format range.
An image processing apparatus that can decompress image data in appropriate manners suitable for a plurality of processes, and simplify and speed up the processes. Blocks of image data are compressed, and information indicative of procedures of the processes to be performed on the blocks of image data by a plurality of image processing units is added to the compressed blocks of image data. Decompression methods for the compressed blocks of image data are determined according to the procedures in the information added to the compressed blocks of image data. The compressed blocks of image data are decompressed using the determined decompression methods.
A solid-state imaging device includes a photodetecting section including pixels each including a transistor and a photodiode, readout wiring lines connected to the transistors, a signal output section for sequentially outputting voltage values according to the amounts of charges input through the respective readout wiring lines, potential change switches for switching the potentials of the readout wiring lines to a potential Vdr different from input potentials of integration circuits of the signal output section, and a controlling section. The controlling section switches potentials of the readout wiring lines to the different potential Vdr for a predetermined period included in a period, after an elapse of a readout period where voltage values corresponding to the amounts of charges generated in the pixels are sequentially output from the signal output section, until a next readout period is started.
An AD converting unit compares an output signal from an amplifier circuit after reset of a pixel with a reference signal of time-variable, outputs a first digital value, when the output signal from the amplifier circuit in a non-reset state of the pixel is larger than a threshold, sets a gain of the amplifier circuit to a first gain, when the output signal is smaller than the threshold, sets the gain of the amplifier circuit to a second gain larger than the first gain, further after the gain of the amplifier circuit was set to the first or second gain, compares the output signal from the amplifier circuit in the non-reset state of the pixel with the reference signal of time-variable, and outputs a second digital value. When resolutions of the first and second digital values differ, a correcting unit corrects a difference between the resolutions.
A method for associating event times or time periods with digital images in a collection for determining if a digital image is of interest, includes storing a collection of digital images each having an associated capture time; comparing the associated capture time in the collection with a special event time to determine if a digital image in the collection is of interest, wherein the comparing step includes calculation of a special event time associated with a special event based on the calendar time associated with the special event and using such information to perform the comparison step; and associating digital images of interest with the special event.
An accessory capable of communicating with a camera, includes a terminal section having a plurality of terminals. The plurality of terminals include a startup state providing terminal that provides, to the camera, a detection level by which the camera detects that the accessory is capable of being started up, a data signal terminal that outputs a data signal including information regarding the accessory to the camera, and a first reference potential terminal having a reference potential of the detection level and the data signal. The startup state providing terminal is disposed adjacent to the data signal terminal, and the first reference potential terminal is adjacent to the data signal terminal, and is disposed with the data signal terminal interposed between the startup state providing terminal and the first reference potential terminal.
A method and apparatus for operating a camera are provided herein. During operation of the camera, a first field of view (FOV) for the camera will be determined along with “undesirable” camera directions. A determination is made whether or not to obtain images from the camera based on whether or not the first FOV is aligned with an undesirable camera direction.
Apparatus, systems and methods are provided for projecting images onto predefined portions of objects in a projection area. The system includes a computing device, a projector and a camera. The computing device stores a digital model of an object, and an image containing a reference to the digital model. The projector, or another light source, projects structured light onto the projection area, and the camera simultaneously captures an image of the projection area. The computing device receives the captured image, determines a position and orientation of the object by comparing the digital model to the captured image, and then generates a canvas image including a version of the image which has been transformed to match the determined position and orientation of the object. The projector projects the canvas image onto the projection area. The transformed image is thereby projected onto a predefined portion of the object.
The present invention relates to a device and method for driving an under damped voice coil motor (VCM) actuator of a camera lens. In one embodiment, the device for driving an under damped VCM actuator comprises a first generator operable to read a first manufacture data from an image signal processor (ISP) and to generate a half natural period, ½ Td, of the VCM actuator by selecting a value approximate to the first data in a first table of the device, a second generator operable to read a second manufacture data from the ISP and to generate the maximum overshoot, K, of the VCM actuator by selecting a value approximate to the second data in a second table of the device, an input shaping signal generator operable to read an input signal corresponding to a desired camera lens moving distance from the ISP and to generate a shaping signal according to the value of the half natural period and the maximum overshoot. The input shaping signal may be produced from second order, third order and fourth order input shaping function. The present invention also provides a simple implementation of a driver configuration to achieve a fast camera lens focus speed, yet robust to tolerate actual system deviation from a manufacture design.
A photographing apparatus and a method of providing a photographed video converts a photographed video into two types of formats, stores the converted video, and transmits the video wirelessly in real-time. Therefore, a user stores a high quality video photographed by a photographing apparatus as well as broadcasts the photographed video in real-time.
The invention is a camera holder extension that includes a telescoping extension to allow a user to take photos at a distance beyond the reach of the user. The invention includes an actuator switch, located in the handle of the extension, which is wired to be in communication with a digital camera integrated device. The actuator switch operates the exposure function of the camera at the distance beyond the reach of the user via a wired digital connection to the device. The invention also includes a lockable two part ball joint that enables articulation of the camera into various positions.
In various embodiments, a time-delay-and-integrate (TDI) image sensor includes (i) a plurality of integrating CCDs (ICCDs), arranged in parallel, that accumulate photocharge in response to exposure to light, (ii) electrically coupled to the plurality of ICCDs, a readout CCD (RCCD) for receiving photocharge from the plurality of ICCDs, and (iii) electrically coupled to the RCCD, readout circuitry for converting charge received from the RCCD into voltage.
In some implementations, a camera captures a video stream of a region of a business without panning or tilting, where the camera includes a field of view that identifies a portion of the region that is captured. An analytics system optionally analyzes the video stream to determine a path of a customer moving across the camera's field of view. In selected embodiments, an image display system can extract a subset of the video stream, where the subset of the video stream depicts the customer during substantially all of the customer's movement across the camera's field of view. A public facing monitor may present the subset of the video stream such that the system effectively emulates the output of a pan, tilt, zoom camera that is tracking the customer across the field of view.
A method for presenting a virtual conference site of a video conference is disclosed in the present invention. The method include: receiving preset virtual conference site attributes and determining one virtual conference site attribute therefrom, where the virtual conference site includes at least two conference terminals; determining a virtual conference site control mode; acquiring, according to the determined virtual conference site attribute and the virtual conference site control mode, one virtual conference site presentation mode in preset virtual conference site presentation modes, and presenting a virtual conference site in the acquired virtual conference site presentation mode. A virtual conference site preset apparatus, a media processing device, a video conference terminal and a video conference system are also disclosed in the present invention. By utilizing the present invention, a conference control mode may be simplified, and the experience of video conference participators may be improved.
An image scanning apparatus includes a scanner configured to scan a manuscript and generate a plurality of scan images; a discriminator configured to calculate a color ratio regarding each of the generated plurality of scan images, compare the calculated color ratio and a predetermined reference value, and discriminate color or black and white regarding each of the generated plurality of scan images; and a controller configured to control the discriminator so that a same discrimination is performed regarding ‘a scan image having a color ratio within a predetermined range including the predetermined reference value’ of among the plurality of scan images.
Described herein are systems and methods for managing electronic documents. In particular, embodiments of the present invention are focussed on managing ingestion of documents into an information system, such as ingestion of documents generated by a device having scanning functionality. Embodiments include devices, software (defined by computer executable code), carrier media, and methodologies. In overview, a document is received from an ingestion source, such as a Multi Function Device (MFD) having a scanner. For example, the document is a scanned into an electronic form from a paper form. This electronic form is subjected to additional processing thereby to implement a predefined security protocol prior to the document (or a modified version thereof) being released into an information system.
A printer may comprise a command file storage unit, a receiving unit, a command file sending unit, and a first data sending unit. The command file storage unit may store a command file including a first command, a second command, and a third command. The first command is a command for sending a request for first data. The second command includes design data, and is a command for converting the first data into second data in accordance with the design data. The third command is a command for displaying a web page in accordance with the second data. The receiving unit may receive a request. The command file sending unit may send a response including the command file when a request for the command file is received. The first data sending unit may send a response including the first data when the request for the first data is received.
In a data processing system coupled for communication to a plurality of agent terminals, a message is received indicating that an agent associated with the agent terminal handled a service request utilizing a skill in which the agent is not indicated as certified by an agent database of the data processing system. In response to receipt of the message, the data processing system updates in the agent database an agent skill record indicative of an amount of utilization of the skill by the agent in handling service requests. The data processing system compares the amount of utilization of the skill by the agent to a threshold. In response to a favorable comparison, the data processing system updates the agent skill record to indicate certification of the agent in the skill. The data processing system performs skill-based routing in a contact center by reference to the agent skill record.
This document discusses, among other things, a networked contact center that includes multiple platforms to host multiple tenants. Example embodiments include receiving a message associated with one of the tenants and identifying one or more of the platforms associated with the message. For some example embodiments, the networked contact center may allow the platform to access a data location that is both associated with the tenant and shared by two or more of the multiple tenants.
A method and apparatus of processing multiple user call records via an IVR call processing application is disclosed. One example method may include receiving a call from a user device, obtaining first user information from a user account stored in a user databank. The first information may be associated with a first call record established during a first previously received call from the user device. The method may also include establishing a first confidence level based on the first user information and obtaining second user information from the user account stored in the user databank. The second user information may be associated with a second call record established during a second previously received call from the user device. The method may also include establishing a second confidence level based on the second user information and transmitting an offer to the user device based on the first confidence level and second confidence level.
A method of indexing recordings of contact center communication sessions is described. The method allows for a recording to be indexed with metadata reflecting a time-varying characteristic of one or more of the parties of the communications session, e.g. the mood of a caller, the current location of a caller. The indexing of recordings with such information allows for more granular search of recordings, in order to find particular call conditions. This can be useful from the point of view of education and training of new call center operatives, and for assessment of call center performance.
The present invention provides a system and method enabling telephony service subscribers to activate, deactivate, make service changes, and access call-related information from telephony services provided by a telephony service provider. According to one aspect, the service management system of the present invention interacts with subscriber terminals connected to a public data network. The service management system receives requests from subscriber terminals and converts the requests into a format compatible with terminal emulation programs, such as the Telnet protocol, running on end office switches. Using the converted request information, the requested service changes are made or the requested call-related information is collected by the end office switches with little or no intervention by service provider personnel.
An enhanced telephone emulation computer system including a minidialer program for controlling a computer to add telephony functions which can be invoked from whatever active program is currently controlling the computer. The minidialer program controls the computer to alter its processing depending upon the context existing at the time when a mouse click or hot key combination event is detected indicating the user wishes to invoke a telephony function. The minidialer program determines whether the user has highlighted any text or numbers in the active window of the application currently controlling the computer and whether the highlighted material is a name or a phone number, and if a name, whether the name is stored with a phone number in a phone book or file maintained on the computer. Processing and telephony menu options displayed as available also depend upon whether the user is or is not on the phone at the time the mouse click or hot key event occurs. In some embodiments, if the user has highlighted a URL, a browser will be launched and the web page corresponding to the URL will be opened.
Methods, Plain Old Telephone System (POTS) phones, and computer program products are provided for synchronizing client application data, such as names and associated telephone numbers in a phone book, between the POTS phone and a content portal through a Public Switched Telephone Network (PSTN). A dial-up data communication connection is established between the POTS phone and the content portal through the PSTN. A determination is made at the content portal that the POTS phone is associated with client application data in the portal database of the content portal. Client application data is synchronized between the POTS phone and the portal database in response to the determined association between the POTS phone and client application data in the portal database.
Presented is a method and associated system for suppression of linear and nonlinear echo. The method includes dividing an input signal into several frequency bands in each of a several of time frames. The input signal may include an echo signal. The method further includes multiplying the input signal in each of the several frequency bands by a corresponding echo suppression signal. Calculating the corresponding echo suppression signal may include estimating a power of the echo signal in a particular frequency band as a sum of several component echo powers, each of the several component echo powers due to an excitation from a far-end signal in a corresponding one of the several frequency bands. Calculating the corresponding echo suppression signal may further include subtracting the power of the echo signal in the particular frequency band from a power of the input signal in the particular frequency band.
A screen display processing apparatus used for a portable terminal apparatus includes a moving unit configured to relatively move a plurality of cases of the portable terminal apparatus, a detection unit configured to detect a parameter value representing a degree of relative movement of the cases, a determination unit configured to determine based on the parameter value whether a shape of the portable terminal apparatus changes, and a first control unit configured to control a function about the screen display provided in the portable terminal apparatus in accordance with the parameter value and the change or no change in the shape.
Provided is an event notification device capable of notifying an event with excellent immediacy without giving a shock or a sense of discomfort to a user. The event notification device 10 of the present invention includes: a notification event detection unit 11 that detects an event to be notified to a user and outputs notification data a; a stimulus control unit 12 that outputs stimulus presentation data b for providing control for presenting a stimulus to the user until the stimulus control unit receives the notification data a, and outputs stimulus removal data c for providing control for removing the presented stimulus after the stimulus control unit receives the notification data a; a stimulus presentation unit 13 that presents the stimulus upon receipt of the stimulus presentation data b and removes the presented stimulus upon receipt of the stimulus removal data c; and a transmission unit 14 that transmits presentation and removal of the stimulus to the user.
A telephone communication system for reducing the number telephone of assigned numbers while allowing for increased availability of individuals and method of using the telephone communication system. The telephone communication system has at least two telephones and each telephone may be placed in activated mode or in the alternative, stand-by mode. The at least two telephones have one and only one active calling number per device and the active calling number for each device is identical to the calling number of the other device(s). A switch is capable of transferring a call from a previously activated phone to a newly activated phone utilizing an on-the-fly-redirect feature.
In one embodiment, a method includes receiving a message associated with a user at an information exchange system. At least one correspondent associated with the user may be determined, based on the message. A social connection between the user and the at least one correspondent may be assessed with respect to a social-networking system. The information exchange system may provide an interface for display to the user, the interface comprising information associated with the message. If the social connection is confirmed, the interface may include social-networking information associated with the at least one correspondent. Otherwise, the interface may provide functionality to create a social connection between the user and the at least one correspondent with respect to the social-networking system.
In one embodiment, a method includes, in connection with a target structured document rendered by a first client application and in response to a user input directed to target content of the target structured document, accessing, by a second client application, a document object model (DOM) representation of the target structured document, determining a target DOM node associated with the target content, recursively scanning one or more properties of each of one or more DOM nodes logically arranged proximal to the target DOM node within the DOM hierarchical tree, generating a set of one or more anchor point definitions based on one or more selected properties of each of the target DOM node and one or more selected ones of the scanned DOM nodes, and storing the set of anchor point definitions in a data structure.
A method of event notification on a handheld communications device involves first receiving an indication of an occurrence of an event at the handheld communications device. The communications device comprises a display device, and the event has an associated notification definition for providing a visual notification of the occurrence of the event. The notification definition comprises a content parameter that specifies a scope of the content of the visual notification, and an action parameter that specifies the action to be taken on the communications device after the visual notification is initiated. Then, a visual notification of the occurrence is provided on the display device in accordance with the associated notification definition. The visual notification provides particulars of the event.
A control circuit (such as a smartphone processor) having access to a wireless two-way transceiver (such as a short-range transceiver) determines a need to offload execution of a task to a server and then determines present unavailability of that server. This control circuit then transmits a first message to the server to prompt the server to awaken. The control circuit then transmits a second message to the server to establish a wireless connection that the control circuit employs to offload execution of the task to the server. By one approach, the aforementioned first message can include a unique identifier for the server. If desired, this unique identifier can have been provided earlier by the server via a general broadcast.
A domain name is received from a customer. DNS is queried for multiple possible subdomains of the domain. For each subdomain that resolves, information about that subdomain's corresponding resource record is stored in a zone file that also includes a resource record for the domain name. The zone file is presented to the customer. A designation from the customer of which of the resource records are to point to an IP address of a proxy server is received. The resource records are modified according to the input of the customer and the zone file is propagated including the modified resource records.
A distributed network instrumentation system (100) includes a security management station (110) including a global network policy decomposer (112) configured to decompose global network security policies to local security policies for distributed policy enforcement, and a network interface (220) communicatively coupled to a compute platform (200). The network interface (220) is configured to off-load processing of the local security policies and end-to-end encryption from an operating system (210) of the compute platform (200) for facilitating network instrumentation.
A hypertext transfer protocol (HTTP) request is used to actuate a secondary communications protocol (e.g., Short Message Service). A server receiving the request may be configured to take actions not specified by the URL associated with the request in response to the characters encoded in the request, such as accessing a secondary communications protocol. The server parses the request to identify action codes and/or content in the request itself, and takes action based on the code or content value. A token code representing a value or fixed number of uses may be utilized in connection with the techniques disclosed herein.
MPLS segment routing is disclosed. In one embodiment, a first core router generates a first data structure that maps first portcodes to respective identities of first neighbor routers or respective first links, wherein the first portcodes identify respective first ports of the first core router, and wherein the first ports are coupled to the first neighbor routers, respectively, via the first links, respectively. The first core router generates and transmits a first link-state packet, wherein the first link-state packet comprises an identity of the first core router and the first data structure.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for location based network usage policies. One of the methods includes storing information defining a plurality of network policy groups, receiving first information indicating that a client device is connected to the network at a first physical location, and identifying a first user role associated with the client device, identifying, from among the plurality of network policy groups, a first network policy group having both (i) an associated first policy location that corresponds to the client device's first physical location, and (ii) an associated policy role that corresponds to the client device's first user role, and regulating the client device's access to resources available on the network based on the one or more network usage policies associated with the identified first network policy group.
A method for dynamic network transport selection is described. An indication from a user of a client device is received, to fetch over a data network media of a predefined type. One of a number of network transport physical layers in the client device is automatically assigned, based on a number of stored, ranked media types and network transport physical layer types, for use in fetching the media over the data network. Other embodiments are also described and claimed.
The present invention relates to methods and arrangements for arranging a distribution tree in a Peer To Peer P2P streaming system. The system comprises a bootstrapping server (10) that creates an external distribution tree based on received register messages from participating operator external clients (2, 3, 4). The method comprises the following steps: —Configuring an operator controlled node (7) to be a regular node in the created external distribution tree. Configuring the operator controlled node (7) to be a parent node for participating operator internal clients (1, 5, 6).
Collaborative management of shared resources is implemented by a storage server receiving, from a first resource manager, notification of a violation for a service provided by the storage server or device coupled to the storage server. The storage server further receives, from each of a plurality of resource managers, an estimated cost of taking a corrective action to mitigate the violation and selects a corrective action proposed by one of the plurality of resource managers based upon the estimated cost. The storage server directs the resource manager that proposed the selected corrective action to perform the selected corrective action.
Communication between an integrated device and a mobile application client on a mobile personal communication device involves a command generated using a mobile application client implemented by non-managed code. The command is received by an operating system, is socket based and conforms with a standard network communications protocol. The command is forwarded to an intermediate module implemented by code executed on the mobile personal communication device and configured for socket based communication according to the standard network communications protocol. After receiving the command, the intermediate module generates a command communication, for receipt by the peripheral device, according to a protocol specific to the peripheral device. The command communication instructing the peripheral device to perform an operation corresponding to the command. The operation is performed using the peripheral device upon receiving the command communication.
Distributing pull protocol requests via a relay server and thereby reducing the number of outgoing packets used by a fragment pull protocol, including the steps of aggregating, by an assembling device, a plurality of fragment pull protocol requests into an aggregated message; transmitting the aggregated message to a relay server, whereby the relay server distributes the requests to at least two fractional-storage servers; and receiving, by the assembling device from the at least two fractional-storage servers, a plurality of fragments in response to the aggregated message.
A method for providing internet security via multiple user authorization in virtual software. Each of two users are provided with a non-transitory tangible storage medium. The first user inputs the storage medium into a local computer. If the first user is granted authorization by a second user, the first user can download at least one additional non-browser based application module into virtual memory of his local computer.
Methods and systems disclosed in the current application are directed to efficient distribution of resource-availability information with respect to individual computer systems within a distributed computer system in order to facilitate various types of computational tasks, including configuration and management tasks and facilities. Certain of these implementations are based on highly efficient, lockless, message-based information-distribution methods and subsystems that transmission of messages at a frequency computed from a computed level of resource availability.
Multi-control password changing includes initiating a password change cycle to change a target user's password, selecting a plurality of administrators to provide password part inputs, receiving password part inputs separately and confidentially from the plurality of administrators, generating a multi-control password comprised of multiple password part inputs, changing the target user's password to the multi-control password, and transmitting either the single multi-control password or multiple password parts each separately to target user. In an exemplary embodiment, a system for multi-control password changing includes a multi-control password changing module configured to change a target user's password, a recruitment module configured to select a plurality of administrators to provide password part inputs, a regulation module configured to receive and process password part inputs from the plurality of administrators, and a change value module configured to generate a multi-control password comprised of multiple password part inputs.
A hybrid device includes a personal digital key (PDK) and a receiver-decoder circuit (RDC). The PDK and RDC of the hybrid device are coupled for communication with each other. In one embodiment, the hybrid device also provides a physical interconnect for connecting to other devices to send and receive control signals and data, and receive power. The hybrid device operates in one of several modes including, PDK only, RDC only, or PDK and RDC. This allows a variety of system configurations for mixed operation including: PDK/RDC, RDC/RDC or PDK/PDK. The present invention also includes a number of system configurations for use of the hybrid device including: use of the hybrid device in a cell phone; simultaneous use of the PDK and the RDC functionality of hybrid device; use of multiple links of hybrid device to generate an authorization signal, use of multiple PDK links to the hybrid device to generate an authorization signal; and use of the hybrid device for authorization inheritance.
Example embodiments are directed to a method of publishing an element template from a first service provider to an administrative owner to determine an optimal end-to-end connectivity path from a source to a destination across at least one resource domain for data transport. The method includes determining, at the first service provider, adjacencies between a first resource domain of the first service provider and a second resource domain of a second service provider. The first service provider publishes to an administrative owner, an element template that identifies connectivity attributes, including adjacencies and adaptation capabilities of the first resource domain. The AO may develop a plurality of possible paths from a source end-point to a destination end-point to transmit data based on the element template from the first service provider and element templates from other service providers. The AO selects an optimal path from the plurality of possible paths.
A first processor-based device (PBD), such as a personal computer functioning as a host and containing digital media files, may share a selected file with a second PBD. Media file-sharing may be facilitated by an automated technique including graphical user interfaces (GUIs). In one embodiment, when a device user wishes to transfer a file to another device, the user hovers the file over a particular desktop icon and drops it, causing it to be automatically transmitted to a corresponding destination. Optionally, in response to hovering, a software program automatically generates a GUI indicating potential destinations. The user then selects a destination, and the system automatically transfers the file to that destination. In another embodiment, media sharing can be initiated from a digital appliance, such as a digital picture frame, and a file can be sent to another PBD, such as another digital picture frame via an intermediary PBD.
A first processor-based device (PBD), such as a personal computer functioning as a host and containing digital media files, may share a selected file with a second PBD. Media file-sharing may be facilitated by an automated technique including graphical user interfaces (GUIs). In one embodiment, when a device user wishes to transfer a file to another device, the user hovers the file over a particular desktop icon and drops it, causing it to be automatically transmitted to a corresponding destination. Optionally, in response to hovering, a software program automatically generates a GUI indicating potential destinations. The user then selects a destination, and the system automatically transfers the file to that destination. In another embodiment, media sharing can be initiated from a digital appliance, such as a digital picture frame, and a file can be sent to another PBD, such as another digital picture frame via an intermediary PBD.
A method is provided in one example embodiment and includes exchanging a session descriptor associated with a network connection and an application on a host, correlating the session descriptor with a network policy, and applying the network policy to the network connection. In alternative embodiments, the session descriptor may be exchanged through an out-of-band communication channel or an in-band communication channel.
Message content is scaled to support rich messaging. Devices and associated messaging systems can support various levels of content richness or fidelity. Message content scaling is employed to ensure sharing of content in as rich a manner as possible given limitations associated with various messaging systems, among other things. Messages can be scaled down or degraded, for instance where communicating devices do not support high fidelity content being transmitted. Alternatively, messages can be scaled up or enriched in cases, where low fidelity content is transmitted to a device supporting richer content, for example.
Displaying electronic information in an instant-messaging application includes accessing a first electronic message providing information describing a first user that has an identifier included in a set of identifiers of users of an instant messaging application. A second electronic message providing information describing a second user that has an identifier included in the set of identifiers of users of an instant messaging application is accessed. Content contained within the first and second messages is analyzed to determine that at least a portion of content is common to the first and second electronic messages. Based upon the content analysis, an indication that the first and second messages include common content is provided to the user. Alternatively or additionally, an indication that two users are in physical proximity to a geographic location may be provided in response to detecting that the two users are within a threshold distance from the geographic location.
A controller connected to a node configured for processing a packet received in accordance with a processing rule that stipulates a matching rule and processing for a packet matching to the matching rule includes a removal request history management unit, a processing rule search unit and a processing rule setting unit. The removal request history management unit retains record(s) of requests made to the node(s) in connection with removing the processing rule. The processing rule search unit references, in setting a new processing rule for the node, the removal request history management unit to search for a processing rule having a matching rule that competes with the new processing rule. The processing rule setting unit re-requests, in case a processing rule having a matching rule competing with the new processing rule exists in the removal request history management unit, the node(s) to remove the processing rule having the matching rule competing with the new processing rule.
A network router dynamically reconfigures representations of forwarding structures used within a forwarding unit of the router. The forwarding structures comprise a plurality of forwarding next hops associated with the routes and stored in a first representation within the forwarding unit. The router further comprises a control unit having a processor to install the forwarding structures within the forwarding unit. In response to input directing the router to change from a first operating mode to a second operating mode, the control unit installs, within the forwarding unit, one or more new forwarding next hops that are associated with none of the routes by the forwarding structures and are stored in a second representation within the forwarding unit that is different from the first representation and, after installing the new forwarding next hop, updates the forwarding structures to associate at least one of the routes to the new forwarding next hop.
A voice over Internet protocol communication system and method provides infrastructure components as intermediaries between networks, the components include multi-protocol session controllers and a multi-protocol signaling switch as well as a management system. The session controllers process calls and participate in the calls that flow through it. The session controllers process calls that are either at the edge of the network or at the core of the voice over Internet protocol network. The session controllers associate calls with one another in call peers for incoming calls as ingress call peers and for outgoing calls as egress call peers. A centralized database of call routing policies is provided to the session controllers. The session controllers provide cost management, topology hiding, and inter-working, or conversion, of calls from SIP networks to H.323 networks for both voice and video.
The disclosure provides a method, a device, and a system for implementing multicast forwarding in an Extended VLAN (Virtual Local Area Network) Bridge (EVB), wherein the method includes: the EVB controlling bridge receives a multicast frame and acquires a multicast address from the multicast frame; inquires on a master port and an identifier (ID) of a subgroup corresponding to the multicast address from a first preset mapping table; forwards, when the ID of the corresponding subgroup is an Multicast Identifier (MCID), the multicast frame carrying the MCID to a corresponding Port Extender (PE) assembly via the master port; and the PE assembly distributes the multicast frame to a User Equipment (UE) according to a correspondence between the MCID carried in the multicast frame and a downlink port of the PE assembly.
Methods and systems are described for determining a physical address for a device connected to a network via an access point. Associations between one or more physical addresses and access points may be stored in a profile associated with the device. If the device is connected to a particular access point, the profile and associations may be used to determine a current physical address for the device.
A distributed monitoring system and a computer-implemented method monitors and controls locally situated network components through a monitoring and control device or processor querying the network component operating parameters and sending control commands for controlling the parameters queried. Reports of the status of the monitored network components are periodically generated from throughout the network and sent to a remotely located status viewing station configured to generate a monitoring interface and display the operational status of the network based on the status reports. If necessary, the status viewing station automatically transmits instructions, or a user enters instructions into the status viewing station, for instructing action be taken by the monitoring and control device or processor, e.g., to adjust one or more operating parameters queried. The distributed monitoring system may be particularly useful in monitoring and managing the health of a digital signage network.
Techniques are provided for detecting network characteristics. At a first endpoint device configured to communicate with a second endpoint device in a network, a request is made to a relay server in a network for an address and port assignment on the relay server. The address and port assignment are obtained from the relay server, and a probing packet is sent at a first time instance to the relay server at an address and port corresponding to the address and port assignment. The first time instance is stored in a timestamp field of the probing packet. A response packet responsive to the probing packet is then received from the address and port on the relay server at a second time instance. The second time instance is stored in a timestamp field of the response packet.
A configurable light timer adapted to receive data to control the operation of the configurable light timer is disclosed. The configurable light timer comprises a control circuit; an input portion coupled to receive a portable memory device by way of a connector on the configurable light timer, wherein the portable memory device stores data to be used by the configurable light timer and is adapted to be removed after the data is downloaded; and a memory coupled to receive the data stored on the portable memory device; wherein control circuit accesses the data from the memory after the data is downloaded and the portable memory device is removed. A method of receiving data to control the operation of the configurable light timer is also disclosed.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for detecting grid events. In one aspect, a method includes receiving signal characteristic data that specify signal characteristic values for signals that are received over each of a plurality of communications channels of a power line communications network. A determination is made that the signal characteristic values for the signals that are received over at least one of the communications channels are outside of a baseline signal value range. An endpoint that communicates over the at least one communications channel is identified, and a determination is made that a set of the signal characteristic values for the identified endpoint matches one of a plurality a grid event signatures for the identified endpoint. Data that identify the endpoint and a particular grid event that is represented by the matched grid event signature are provided.
Techniques for routing data via lower layer paths through lower layers of a protocol stack are described. A lower layer path may be composed of a flow for packets, a link at a link layer, and a channel at a physical layer. A packet may be received from an application. A most preferred lower layer path for the packet may be selected from among at least one available lower layer path. The available lower layer path(s) may be arranged in an order of preference based on treatment of packets (e.g., best effort or QoS), protocols used at the link layer, channel types at the physical layer, and/or other factors. The packet may be sent via the selected lower layer path. A highest precedence lower layer path for the packet may be set up (e.g., in parallel) if this path is not among the at least one available lower layer path.
The performance of randomized load balanced or selective, randomized load balanced networks is enhanced by using ingress traffic engineering in addition to randomized traffic splitting. By first using the capacity of all links leading to the final destination of traffic, the remaining capacity is freed up for best effort traffic. Traffic splitting rules that enhance the performance of randomized load balanced networks in terms of packet missequencing and other quality of service criteria are also described.
Disclosed is a polybinary-signal generator in which correlative coding is applied to a plurality of fractional-bit-rate signals instead of being applied to a corresponding multiplexed full-bit-rate signal. The resulting coded fractional-bit-rate signals are variously delayed with respect to one another and then summed to generate a polybinary output signal. One beneficial feature of this architecture is that most circuit components of the polybinary-signal generator operate at the fractional bit rate, which helps to alleviate at least some of the technical difficulties associated with the design of radio-frequency circuits intended for relatively high bit rates. Another beneficial feature of this architecture is that the polybinary-signal generator also serves as a signal multiplexer.
Disclosed are a device and method for automatically controlling frequency. The automatic frequency control device includes a frequency error detection unit configured to obtain a frequency error detection value of a received carrier, a frequency error prediction unit configured to calculate a first frequency error prediction value on the basis of the frequency error detection value when the frequency error detection value satisfies a preset first criterion, and a frequency error compensation unit configured to calculate a second frequency error prediction value by correcting the first frequency error prediction value, and compensate for a frequency of the carrier on the basis of the second frequency error prediction value when a frequency change rate of the received carrier satisfies a preset second criterion. Therefore, overshoot and undershoot effects are minimized, and thus frequency control may be correctly performed.
A device for detecting an estimated value for a symbol at a given time, which is supplied to a phase modulation and transmitted via a transmission channel with a time-variable phase, provides a unit for determining log weighting factors in a forward recursion, a unit for determining complex coefficients in a forward recursion, a unit for determining log weighting factors in a backward recursion, a unit for determining complex coefficients in a backward recursion, a unit for determining an extrinsic information, a unit for determining the phase factor with the maximal weighting factor in a forward recursion and a unit for determining the phase factor with the maximal weighting factor in a backward recursion.
A mechanism for retrieval of carrier frequency and carrier phase in a received modulated carrier waveform. Retrieval of carrier frequency and carrier phase can be implemented in an analog electrical circuit, using a field programmable gate array (FPGA), or in computer code. Independent of the implementation, the mechanism performs frequency and primary phase recovery by forcing transforms of a pilot tone in the upper and lower sidebands to the same frequency using a feedback loop. The difference-in-magnitudes of the channelized pilot are used by a phase lock loop to perform secondary phase recovery in a manner that also resolves phase sign ambiguity. Benefits of this mechanism include improved phase lock loop tracking performance and a reduction of noise in the data demodulated from the received carrier waveform.
A phase detector includes data detection logic for detecting data in a communication signal, amplitude detection logic for processing modulation chosen from any of a PAM2 and a PAM4 communication modality, in-phase edge detection logic for detecting in-phase edge information in the communication signal, quadrature edge detection logic for detecting quadrature edge information in the communication signal, and mixing logic for determining an amount of in-phase edge information and quadrature edge information to be applied based on at least one channel parameter in the communication channel.
It is possible to provide a radio communication terminal device and a radio transmission method which can improve reception performance of a CQI and a reference signal. A phase table storage unit stores a phase table which correlates the amount of cyclic shift to complex coefficients {w1, w2} to be multiplied on the reference signal. A complex coefficient multiplication unit reads out a complex coefficient corresponding to the amount of cyclic shift indicated by resource allocation information, from the phase table storage unit and multiplies the read-out complex coefficient on the reference signal so as to change the phase relationship between the reference signals in a slot.
Disclosed embodiments may include a circuit having a clock-to-output (TCO) compensation circuit coupled to a RAM pull-up transmitter and a RAM pull-down transmitter. The TCO compensation circuit may be configured to compare a first output with a second output and to generate a delay code, based on the comparison, for at least one other RAM transmitter on the die to adjust a duty cycle of a third output associated with the at least one other RAM transmitter. Other embodiments may be disclosed.
Systems and methods for clustering messages are provided. In some aspects, a method includes receiving a set of communications. The set of communications includes a set of messages. Each communication in at least a portion of communications in the set of communications is associated with a set of contacts. The method also includes determining a first contact list based on the set of communications. The method also includes determining a first subset of the set of messages, each message in the first subset of the set of messages being associated with a set of contacts including at least a first threshold number of contacts in the first contact list. The method also includes providing an indication of the first subset of the set of messages.
The present invention relates generally to telecommunication services, and in particular, to communicating priority indications between telecommunication nodes in a telecommunication system having a separated call control and bearer control architecture. The present invention provides a number of solutions which map or assign the call level priority to the bearer level.
Techniques to access messaging services for branch offices are described. In one embodiment, for example, an apparatus may include a network interface for a packet-switched network, a private branch exchange for a circuit-switched network, and a gateway to couple to the network interface and the private branch exchange. The gateway may be operative to establish a packet-switched call connection with the network interface and a circuit-switched call connection with the private branch exchange. The gateway may further include a call router to route a call request over a circuit-switched network with the private branch exchange on behalf of a call terminal to access messaging services from a data center with a messaging server when the call terminal and the network interface are unavailable. Other embodiments are described and claimed.
A network device includes an antenna connected to an RF chip and a processor coupled to an Ethernet port, the RF chip, a program memory, a packet buffer memory, a pointer buffer memory, and a program memory. The program memory contains instruction that, when executed by the processor, cause a plurality of packets received by the antenna and the RF chip in a first order to be stored in the packet buffer memory in such order, cause a pointer associated with each one of the plurality of packets to be stored in the pointer buffer memory, cause the pointers stored in the pointer buffer memory to be placed in a second order in accordance with a timestamp that is included with each packet, cause the packets stored in the packet buffer memory to be passed along to the Ethernet port in accordance with the sorted pointer to each packet.
Multicast capability in a virtual private LAN service (VPLS) is provided in a provider IP/MPLS infrastructure without headend replications by encapsulating a customer data packet to use an established multicast protocol, such as IP multicast. In one example, the customer data packet is encapsulated by an IP header having an IP multicast group address and an Ethernet header. In one implementation, a DNS type mechanism is provided to distribute the IP multicast addresses for VPLS use. Such IP multicast group address can be set aside from an administratively scoped address range. An efficient IP routing algorithm running on the provider's network provides an efficient distribution tree for routing IP-encapsulated customer packet for the VPLS.
A method is provided in one example embodiment and includes communicating an in-band message packet from a first network element; receiving a response to the in-band message from a second network element, the response contains tunnel identification binding data that identifies a tunnel on a backhaul link on which traffic from a user equipment can flow; and receiving instructions from the second network element to offload a received data packet from the backhaul link. In particular instances, the in-band message is set to loopback when the in-band message is sent from the first network element. In other embodiments, the tunnel identification binding data is provided in the payload of the in-band message when the in-band message is sent from the first network element. In other examples, the method can include receiving an assigned Internet protocol (IP) address of the user equipment in the response to the in-band message.
A system for providing handoff for a mobile devices comprising a mobile phone programmed to automatically handover between differing data bearers and to optimally detect those bearers in a roaming environment keeping power consumption to a minimum. Repeating means for these mobile devices to extend the range of coverage and the protocol for that coverage.
Using switching technologies to duplicate packets of a digital stream (e.g., digital video stream) sent from one workstation to multiple recipient workstations, where the switching technologies enable the multiple streams sent from the switch to the recipient workstations to be generated from a single digital stream sent from the sending workstation to the switch. Data units, such as video data units, may be transmitted by using a switch to enable receipt of a stream of data units including a payload portion and an attribute portion from at least two conferencing participants. The switch is used to duplicate at least a subportion of the payload portion of a data unit within the stream of data units, and to enable access to the duplicated subportion of the data unit by two or more conferencing participants.
A server receives encrypted information for an intended recipient. The server determines, based on recipient information, whether the recipient's device is able to decrypt the encrypted information. If so, the encrypted information is provided to the device. Upon determining that the device is unable to decrypt the encrypted information, the server sends a notification message to the device. The notification message indicates that the encrypted message has been received. In response to the notification message, the server receives a response from the device. If the device is successfully authenticated, based on the response, the server decrypts the encrypted information and provides the decrypted information to the device for presentation to the recipient.
A method for managing a conference between two or more parties comprises an identity based authenticated key exchange between a conference management element and each of the two or more parties seeking to participate in the conference. Messages exchanged between the conference management element and the two or more parties are encrypted based on respective identities of recipients of the messages. The method comprises the conference management element receiving from each party a random group key component. The random group key component is computed by each party based on a random number used by the party during the key authentication operation and random key components computed by a subset of others of the two or more parties seeking to participate in the conference. The conference management element sends to each party the random group key components computed by the parties such that each party can compute the same group key.
Methods, systems, and computer programs for producing hash values are disclosed. A prefix-free value is obtained based on input data. The prefix-free value can be based on an implicit certificate, a message to be signed, a message to be verified, or other suitable information. A hash value is obtained by applying a hash function to the prefix-free value. The hash value is used in a cryptographic scheme. In some instances, a public key or a private key is generated based on the hash value. In some instances, a digital signature is generated based on the hash value, or a digital signature is verified based on the hash value, as appropriate.
Circuitry to facilitate testing of serial interfaces is described. Specifically, some embodiments of the present invention facilitate testing the clock and data recovery functionality of a receiver. A serial interface can include a multiplying phase locked loop (MPLL) clock generator, a transmitter, and a receiver. The MPLL clock generator can generate a first clock signal and a second clock signal, and can vary a phase and/or frequency difference between the first clock signal and the second clock signal. During test, the transmitter and the receiver can be directly or capacitively coupled to each another. Specifically, during test, the serial interface can be configured so that the transmitter transmits data using the first clock signal, and the receiver receives data using the second clock signal. The clock and data recovery functionality of the receiver can be tested by comparing the transmitted data with the received data.
Embodiments relate generally to systems and methods for providing access to a trusted security zone container within a trusted security zone of a mobile device. An application may receive trusted service manager validation data from a trusted service manager. The application may also receive a trusted security zone master key, wherein the trusted security zone master key provides access to a plurality of trusted security zone containers within the trusted security zone. The application may hash the trusted service manager validation data with the trusted security zone master key. The application may generate the trusted security zone sub key based on hashing to access one or more containers. One or more signal may be transmitted to provision the set of one or more trusted security zone containers with the trusted security zone sub key. The application may provide the sub key to the trusted service manager to access a container.
A distributed key-based encryption system comprises a sending side and a receiving side. The sending side comprises a key-data generation unit, an encryption unit, a first wireless-transfer unit, and a second wireless-transfer unit. The receiving side comprises a third wireless-transfer unit, a fourth wireless-transfer unit, and a decryption unit. The communication between the second wireless-transfer unit and the fourth wireless-transfer unit is directional.
An encryption apparatus and method that provide a mobile fast block cipher algorithm that supports low-power encryption. The encryption apparatus includes a user interface unit, a key scheduler unit, an initial conversion unit, a round function processing unit, and a final conversion unit. The user interface unit receives plain text to be encrypted and a master key. The key scheduler unit generates a round key from the master key. The initial conversion unit generates initial round function values from the plain text. The round function processing unit repeatedly processes a round function using the round key and the initial round function values. The final conversion unit generates ciphertext from the resulting values of the round function processed in a final round by the round function processing unit.
A low-power encryption apparatus and method are provided. The low-power encryption apparatus includes a mask value generation unit, a mask value application unit, a round key application unit, a mask operation unit, a shift operation unit, and a shift operation correction unit. The mask value generation unit generates a mask value M having the same bit length as input round function values. The mask value application unit generates first masking round function values by applying the mask value M. The round key application unit generates second masking round function values by applying round key values. The mask operation unit generates third masking round function values by performing a mask addition operation. The shill operation unit generates fourth masking round function values by performing a circular shift operation. The shift operation correction unit generates output round function values by performing an operation using the mask value M.
A method and an arrangement (400, 600) in a first and second node, respectively, are provided. In a step (220), the first node (110) sends a plurality of resource units in a time period on a combined feedback and data channel. Said plurality of resource units comprises information about feedback data and user data. At least a minimum number of resource units are reserved for allocation by the user data.
Described herein are an apparatus, system and method for timing recovery in processors by means of a simplified receiver architecture that consumes less power consumption, has lower bit error rate (BER), and higher jitter tolerance. The apparatus comprises a phase interpolator to generate a clock signal; a first integrator to integrate a first portion of a data signal over a duration of a phase of the clock signal; a first sampler to sample the first integrated portion by means of the clock signal; a first circuit to store a first edge sample of the data signal; a second sampler to sample the stored first edge sample by means of the clock signal; and a clock data recovery unit to update the phase interpolator based at least on the sampled first integrated portion and sampled stored first edge sample of the data signal.
A serial input/output method and receiver include an receiver portion to receive an analog differential serial input and sample the input to provide data and error signals, an equalization feedback loop responsive to the data and error signals to adjust the receiver portion, a phase feedback mechanism separate from the equalization feedback loop to provide a phase error, and a clock data recovery block coupled to receive the phase error to perform timing recovery for the receiver portion independent of the equalization feedback to adjust the sampling.
Systems and methodologies are described that facilitate blanking on portions of bandwidth, such as a subset of interlaces, utilized by communicating devices that are dominantly interfered by a disparate device in wireless communications networks. The portions of bandwidth can relate to critical data, such as control data, and one or more of the communicating devices can request that the dominantly interfering device blank on one or more of the portions. The communicating devices can subsequently transmit data over the blanked portions free of the dominant interference. Additionally, the dominantly interfering device can request reciprocal blanking from the one or more communicating devices.
The invention relates to a method and a system for generating clock signals in a wireless communication device. The method includes generating an uncorrected reference clock signal, generating at least one frequency correction value corresponding to a frequency error in the uncorrected reference clock signal, and generating at least one radio frequency clock signal based on the uncorrected clock signal and the at least one frequency correction value, for receiving and transmitting radio frequency signals. The method further comprise generating, independently of the at least one radio frequency clock signal, a baseband timing signal based on the uncorrected reference clock signal and the at least one frequency correction value, for clocking base-band signal processing circuits.
A method for detecting soft-decisions in a 2×2 MIMO system includes detecting all candidate symbol vector sets S in which there exist all values of a real part and an imaginary part, and calculating a log-likelihood ratio (LLR) with respect to the candidate symbol vector sets S from LLR ( b k i ) = min s ∈ S ⋂ β i , k - ED ( s ) 2 σ n 2 - min s ∈ S ⋂ β i , k + ED ( s ) 2 σ n 2 .
A first optical data signal is transmitted on a first data carrier from a first network element. First service information is transmitted from a first service by means of a first optical service signal on a first service carrier. A second optical data signal is transmitted on a second data carrier from a second network element, and second service information is transmitted by a second optical service signal on a second service carrier. An offset between a frequency of the first data carrier and a frequency of the first service carrier is substantially equal to an offset between a frequency of the second data carrier and a frequency of the second service carrier.
Devices and methods are provided for using a mobile station to mitigate interference between wireless access points. A mobile station communicates interference mitigation data corresponding to a first and second set of radio resources between a first and second wireless access point (AP). The interference mitigation data is processed by the first wireless AP to resolve conflicts in the claiming, and subsequent assignment, of the first and second radio resource assignments to the mobile station.
An HO ODU signal input to an optical transmission apparatus is disassembled into LO ODUs. LO ODUs specified to form an aggregated ODU are disassembled not into individual LO ODUs but into a unit of an LO ODU group that forms an aggregated ODU. Clock extraction and an alarm process are performed not for the individual LO ODUs but for each aggregated ODU. This eliminates the need for a hardware configuration for performing the clock extraction and the alarm process in units of LO ODUs, leading to saving of hardware resources.
During a communication technique, an electronic device receives an audio signal from a remote electronic device, such as another electronic device that is proximate to the electronic device. This audio signal may include information that specifies an identifier. The electronic device may analyze the audio signal to extract the identifier, and may provide the identifier to a pre-defined location via a network, such as a web page on the Internet. In response to providing the identifier, the electronic device receives the operation from the pre-defined location via the network. For example, the operation may include an instruction to open a document (such as a web page) on the network.
A method of receiving signals in an audience response system on a plurality of channels comprises receiving a first number of signals on a first channel during a first period of reception for a first predetermined length of time. The method further comprises transmitting at least one acknowledgment signal. The method further comprises receiving a second number of signals on a second channel during a second period of reception for a second predetermined length of time. The method further comprises transmitting at least one additional acknowledgment signal. The method further comprises comparing the first number of signals to the second number of signals. The method further comprises adjusting a future predetermined length of time for a period of reception on one of the first and second channels based on the comparison.
Example method, apparatus, and system embodiments are disclosed to provide a high data throughput optical communication link. An example embodiment comprises: a high frequency optical receiver configured to receive signals modulated with high frequency data; an optical waveguide having a receiving portion and a transmitting portion juxtaposed with the receiver, configured to transfer signals incident on the receiving portion, to the transmitting portion, and to transmit the signals to the receiver; a guide portion configured to releasably engage another apparatus, for positioning the waveguide with respect to the other apparatus, to receive at the receiving portion of the waveguide, signals from the other apparatus, for delivery to the receiver; and a wireless power circuit configured to exchange wireless power with the other apparatus, to convert between electrical signals modulated with high frequency data and the optical signals modulated with high frequency data received by the waveguide.
A signal processing circuit includes: a first compensator configured to compensate for waveform distortion corresponding to chromatic dispersion of a received optical signal by using digital electrical signals obtained by sampling analog electrical signals by using a sampling signal, the analog electrical signals being obtained by opto-electric conversion of multiple optical signals that include an intensity of the received optical signal and phase information thereon; and a chromatic dispersion compensation controller configured to control a compensation value for the chromatic dispersion in the first compensation from the digital electrical signals in which the chromatic dispersion has been compensated for on the basis of a detected phase offset between the sampling signal and a modulation frequency of the received optical signal.
A novel optical detection apparatus is disclosed comprising a plurality of photodetectors and a plurality of transimpedance amplifiers wherein the photodetectors and the amplifiers are electrically connected to each other and are located in close proximity to each other, thus allowing the detecting of high frequency optical signals over a large detection area. Further, logical circuitry is disclosed for processing the signals generated from the photodetectors and for determining the strength of incoming light signals on various portions of the detection area.
An approach is provided that uses diversity to compensate fading of free-space optical (FSO) signals propagating through an environment characterized by atmospheric scintillation. One embodiment involves collecting at least one FSO beam, demultiplexing the beam by wavelength into at least two sub-beams, detecting each sub-beam to produce an electrical output therefrom, and recovering a signal using complementary information from at least two of the electrical outputs. Another embodiment involves collecting the FSO beam onto an array of spatially separated sub-apertures, detecting the light entering each sub-aperture to produce an electrical output therefrom, and recovering a signal using complementary information from at least two of the electrical outputs. This second embodiment enables both electronic adaptive processing to coherently integrate across the sub-apertures and in the case of multiple transmit apertures a free space optical Multiple Input Multiple Output (MIMO) system.
An infrared LED of an IrDA transceiver module is usable to transmit IrDA signals as well as RC control signals. When making an IrDA transmission, the IrDA LED is driven with a lower amount of current. When making an RC transmission, the IrDA LED is driven with an increased amount of current such that infrared emissions received by an RC receiver are of adequate power to be received as RC control signals. A current-limiting circuit allows more LED current to flow the longer current is allowed to flow through the IrDA LED. By controlling the durations of infrared bursts in the RC transmission, the average LED current during infrared bursts of RC transmissions is controlled. Using this technique allows the IrDA module to be used to transmit RC signals at different transmission power settings. To reduce power consumption, the minimum transmission power necessary to engage in RC communications is used.
The invention relates to a device (10) for transmitting data between two rail vehicles (12, 14). At each rail vehicle (12, 14) one data transmission unit (16 to 22, 80, 90, 92) is arranged, wherein between the data transmission units (16 to 22, 80, 90, 92) a data transmission link for transmitting data is formed. Data transmission via this data transmission link is carried out by means of an optical radio relay system.
Techniques for extracting the characteristic response of a non-linear channel are presented. In various implementations of the invention, a channel's characteristic response may be determined by identifying a first input sequence, determining the ones compliment of the first input sequence and then determining the response of the channel to these two input sequences. Subsequently, two input matrices and two response matrices may be generated based upon the two input sequences and their corresponding responses. Given these four matrices, a symmetrical response component may be determined by iteratively solving a system of equations formed from the columns of each matrix. Subsequently, given the symmetric component and these four matrices, an asymmetrical response component may be determined by again iteratively solving the system of equations for the columns of each matrix.
The present disclosure relates to a cell organization and method for controlling ultra-wideband (UWB) transmitting/receiving devices, the aim of which is to improve spatial occupancy (number of transmitters/receivers operating per unit area) and spectral efficiency (number of transmitters/receivers operating in a certain frequency range) in a predetermined area. The control method is based on configuring the optimum parameters—transmission power, bandwidth among others—for each UWB transmitter/receiver present in each cell. The configuration is calculated by monitoring the spectral parameters of the UWB transmitters/receivers operating in the area under control using a series of UWB sensors. In a preferred embodiment of the disclosure the sensors can be interconnected using photonic technology.
A voltage mode transceiver having an input/output (I/O) node for coupling to a bidirectional signaling link is disclosed. The transceiver includes a transmit circuit having an output coupled to the node and a receive circuit. The transmit circuit includes a transmit digital-to-analog converter (DAC) circuit having a transmit impedance network and a hybrid impedance network. The transmit impedance network generates an analog transmit version of a digital data signal while the hybrid impedance network couples to the transmit impedance network to generate an analog mirror version of the digital data signal. The receive circuit has a first input coupled to the I/O node and a second input coupled to receive the analog mirror version of the digital data signal.
Embodiments of the present disclosure provide a transmitter, a receiver and methods of operating a transmitter and a receiver. In one embodiment, the transmitter has at least three transmit antennas and includes a feedback decoding portion configured to recover at least one group-based channel quality indicator provided by a feedback signal from a receiver, wherein each group-based channel quality indicator corresponds to one of a set of transmission layer groupings. The transmitter also includes a modulator portion configured to generate at least one symbol stream and a mapping portion configured to multiplex each symbol stream to at least one transmission layer grouping. The transmitter further includes a pre-coder portion configured to couple the transmission layers to the transmit antennas for a transmission. The receiver includes a decoder portion which is configured to use decoded signals from at least one group to decode the other groups.
The present invention relates to a refinement of the Alamouti encoding scheme. The Alamouti scheme provides transmitting in a first period, the symbols S1 and S2 and in the next period the symbols—S2* and S1*, wherein S1* is the complex conjugate of S1. The symbols carrying the same information are transmitted on different paths to a receiver. If a disturbance occurs during the first period, the receiver may recover the symbol from symbol S1* in the second time period and vice versa. If no disturbance occurs, the receiver may use both symbols to further improve the transmission quality. An interleaver is provided to increase the transmission distance between redundant symbols, thereby causing the spread delay to be set to a value larger than the maximum length of typical channel disturbance in the communication channel.
Multiple antennas employed at the transmitter and receiver can significantly increase a MIMO system capacity, especially when channel knowledge is available at the transmitter. Channel state information may be provided to the transmitter by the receiver in a codebook based precoding feedback. An approach is proposed in which the receiver conducts a search of precoder elements of a codebook to provide the transmitter with rank information and precoder control index that enhances capacity. Unlike the conventional exhaustive search, the proposed approach reduces complexity by reducing the search space of precoder elements for consideration. Performance loss is minimized by reducing the search space of higher rank precoder elements and keeping the search space of lower rank precoder elements.
A power line communication system is provided in which the influence of the impulsive noise unexpectedly generated on a power line which is a communication medium can be reduced according to the characteristics of the impulsive noise by an existing method and power line communication can be realized without a hindrance. A transmitter is constituted by: a modulator for conveying a LIN data signal by a power line; a filter that allows a signal of a predetermined band to pass therethrough; and a sinusoidal wave outputter (sinusoidal wave in the figure). In contrast, the receiver is constituted by the sinusoidal wave outputter, the filter and a demodulator that performs demodulation. To the power line, a limiter that limits the amplitude of the propagating signal to a predetermined amplitude (reception signal amplitude) is connected.
In one embodiment, a method, in a wireless network, of transmitting a sequence of bits of information from an array of antennas, the array of antennas comprising a plurality of antennas, each antenna of the plurality of antennas having a plurality of feed points, comprises selecting an antenna and at least one feed point of the plurality of feed points for the selected antenna from a plurality of combinations of antenna and at least one feed point to indicate at least part of the sequence of bits; and transmitting a signal from the selected antenna by driving the selected at least one feed point.
Described herein are techniques related to near field coupling and proximity sensing operations. For example, a proximity sensor uses a coil antenna that is utilized for near field communications (NFC) functions. The proximity sensor may be integrated into an NFC module to form a single module.
An apparatus for decoding data includes a variable node processor, a check node processor, and a field transformation circuit. The variable node processor is operable to generate variable node to check node messages and to calculate perceived values based on check node to variable node messages. The check node processor is operable to generate the check node to variable node messages and to calculate checksums based on variable node to check node messages. The variable node processor and the check node processor comprise different Galois fields. The field transformation circuit is operable to transform the variable node to check node messages from a first of the different Galois fields to a second of the Galois fields.
An apparatus for layered low density parity check decoding includes a variable node processor and a check node processor. The variable node processor is operable to generate variable node to check node messages and to calculate perceived data values based on check node to variable node messages. The check node processor includes an intermediate message generator circuit operable to generate intermediate check node messages, a shift register based memory operable to store the intermediate check node messages, and at least one check node to variable node message generator circuit operable to generate the check node to variable node messages based on the intermediate check node messages from the shift register based memory.
One embodiment of the invention provides a method and apparatus for decompressing a compressed data set using a processing device having a plurality of processing units and a tangible, non-transitory shared memory. The compressed data set comprises a plurality of compressed data segments, in which each compressed data segment corresponds to a predetermined size of uncompressed data. The method includes loading the compressed data set into the shared memory so that each compressed data segment is stored into a respective memory region of the shared memory. The respective memory region has a size equal to the predetermined size of the corresponding uncompressed data segment. The method further includes decompressing the compressed data segments with the processing units; and storing each decompressed data segment back to its respective memory region within the shared memory.
A method is provided for calibrating the mean frequency of a voltage controlled oscillator (VCO) based analog-to-digital converter (ADC). The method accepts a differential analog input signal comprising a positive signal and a negative signal. The positive signal is converted into a first frequency and the negative signal is converted into a second frequency. The first frequency is converted into a first digital value and the second frequency is converted into a second digital value. The first digital value is added to the second digital value to find a common mode value, and the common mode value is compared to a predetermined common mode value to find a first error. The first error is converted to a first bias modification of the differential analog input signal, and in response to the differential analog input first bias modification, the first error is minimized.
Described is an apparatus for providing spread-spectrum to a clock signal. The apparatus comprises: an oscillator to generate an output clock signal, the oscillator to receive an adjustable reference signal to adjust frequency of the output clock signal; a first circuit to provide a first signal indicative of a center frequency of the output clock signal; a second circuit to generate a switching waveform to provide spread-spectrum for the output clock signal; and a third circuit, coupled to the first and second circuits, to provide the adjustable reference signal according to the first signal and the switching waveform.
Apparatus and methods for synchronizing phase-locked loops (PLLs) are provided. In certain implementations, a fractional-N synthesizer includes a PLL and a control circuit that controls a division value of the PLL. The control circuit includes an interpolator, a reset phase adjustment calculator, and a synchronization circuit. The interpolator can control a fractional portion of the PLL's division value. The reset phase adjustment calculator can include a counter for counting a number of cycles of the reference clock signal since initialization of the fractional-N synthesizer, and the reset phase adjustment calculator can generate a phase adjustment signal based on the count. The synchronization circuit can synchronize the PLL in response to a synchronization signal, and can correct for a synchronization phase error indicated by the phase adjustment signal.
A driver circuit drives a plurality of groups of light emitting elements. Each element includes an anode, a cathode connected to the ground, and a gate that controls electrical conduction between the anode and cathode. A first driver section simultaneously drives the anodes of the elements of the plurality of groups of elements. A second driver section simultaneously drives the gates of the elements in a corresponding group of the plurality of groups. The second driver section includes a series connection of a first switch element and a voltage level shifter. The series connection is connected between a power supply and the group of gates. The second driver section further includes a second switch element connected between the group of gates and the ground.
A two-terminal switching device includes a resistive switching element, a diode, and a resistive circuit. The resistive switching element switches between low and high resistance states based on a switching signal and maintain a switched resistance state until another switching signal is received. The diode is connected to the resistive switching element and blocks the switching signal from being transmitted to an output terminal. The resistive circuit allows the switching signal blocked by the diode to flow to the reference potential.
A circuit implementing a soft logical processing network includes an interconnection of analog processing elements, which can include soft logic gates, for instance soft Equals gates and soft XOR gates. In some examples, each of the soft logic gates include multiple circuit parts, with each part including an input configured to accept a voltage signal representation of a soft logical quantity, and a conversion section configured to use the accepted voltage representation to form a corresponding current signal. The current signals are combined to form a signal representation of the output of the gate. In an application of soft logic gates, a memory includes a group of electrical storage elements, each electrical storage elements carrying a respective storage values; a group of conversion elements, each conversion element being coupled to a respective electrical storage element for selectively converting the corresponding storage value to a current signal; and a current combination element for combining the current signals to form an output signal.
A controller for a converter is designed to receive from a measuring device measurement signals from an output line of the converter, and to analyze the measurement signals in order to generate a switching signal that has a switching frequency, wherein the controller comprises a sampler for generating a sample signal by sampling received measurement signals. The sampler is designed to perform the sampling at a sampling frequency that is less than three times the switching frequency. A converter comprises a controller in accordance with the invention.
A flexible logic unit (FLU) is targeted to be primarily, but not exclusively, used as an embedded field programmable gate array (EFPGA). The unit is comprised of a plurality of programmable building block tiles arranged in an array of columns and rows of tiles, and programmed by downloading a bit stream, done tile by tile and column by column, using latches that are sequentially programmed and locked using a lock bit as part of the bit stream provided. A scheme of odd and even clocks prevent latch transparency and ensures that once data has arrived at its destination it is properly locked, not to be unintentionally overwritten.
One embodiment relates to an integrated circuit including a multiple-voltage programmable logic fabric. The programmable logic fabric includes circuits of a first type operating in a first voltage domain and circuits of a second type operating in a second voltage domain. The second voltage domain has a lower supply voltage than the first voltage domain. The integrated circuit further includes downward level conversion circuit elements in the programmable logic fabric for driving signals from the first voltage domain to the second voltage domain and upward level conversion circuit elements in the programmable logic fabric for driving signals from the second voltage domain to the first voltage domain. Other embodiments, aspects, and features are also disclosed.
A system and method to efficiently use a plurality of ‘receivers’ to monitor a larger plurality of ‘sources’ for audio content. Upon identifying that a source is active, one of the plural receivers is assigned to convey the content to a destination. All other receivers are prevented from monitoring that specific source for the duration of its activity, but continue to monitor the remaining sources. ‘Source’ includes any source of information containing audio content. ‘Receiver’ includes any device capable of selectively conveying such content, including physical switches, hardware or software multiplexers, microphones, radio receivers, or any other means of obtaining such content.
A resistance adjusting circuit including, a reference resistor, a first power source configured to output a first voltage, a first current source configured to output a first current based on a reference current set by using the reference resistor, a first variable resistor, a second current source configured to output a second current obtained by multiplying the first current by a reciprocal ratio, the reciprocal ratio being obtained as a reciprocal number of a ratio of a target resistance of the first variable resistor to a resistance of the reference resistor, and a controller configured to set a resistance of the first variable resistor so that a voltage at a second terminal of the reference resistor and a voltage at a connecting part of the first variable resistor and the second current source become equal to each other.
An acoustic wave device includes a piezoelectric substrate, a comb-shaped electrode formed on the piezoelectric substrate and configured to excite a Rayleigh wave as a main acoustic wave, a first dielectric film formed above the piezoelectric substrate to cover the comb-shaped electrode, and a second dielectric film having a portion provided between electrode fingers of the comb-shaped electrode and a portion provided above the comb-shaped electrode. The portion provided between the electrode fingers is provided between the piezoelectric substrate and the first dielectric film. The portion provided above the comb-shaped electrode is provided between the comb-shaped electrode and the first dielectric film. A speed of a transverse wave propagating through the first dielectric film is lower than a speed of the Rayleigh wave excited by the comb-shaped electrode. A speed of a transverse wave propagating through the second dielectric film is higher than the speed of Rayleigh wave excited by the comb-shaped electrode.
A SAW device includes an IDT which is provided on the principal surface of a quartz crystal substrate having Euler angles (−1.5°≦φ≦1.5°, 117°≦θ≦142°, |ψ|≠90°×n (where n=0, 1, 2, 3)) and excites a Rayleigh wave (wavelength: λ) in a stopband upper end mode. Inter-electrode-finger grooves are recessed between electrode fingers of the IDT. An IDT line occupancy η and an inter-electrode-finger groove depth G satisfy a predetermined relationship in terms of the wavelength λ, such that the SAW device has a frequency-temperature characteristic of a cubic curve having an inflection point between a maximum value and a minimum value in an operation temperature range. The inflection point is adjustable to a desired temperature or a desired temperature range depending on the IDT line occupancy η within an operation temperature range.
A power amplifier circuit includes an amplifier MOSFET and a predistorter MOSFET. The predistorter MOSFET source and drain are connected together, and the predistorter MOSFET is connected between the gate of the amplifier MOSFET and a second bias voltage signal. This biasing of the predistorter MOSFET causes it to provide a nonlinear capacitance at the gate of the amplifier MOSFET. The combined non-linear capacitances of the amplifier MOSFET and predistorter MOSFET provide predistortion that promotes cancellation of the distortion or nonlinearity contributed by the amplifier MOSFET alone.
The present disclosure generally relates to the field of digital Class-D amplifiers and more specifically to a technique for reducing output waveforms distortion of a digital class-D amplifier implementing a ternary modulation scheme. An apparatus embodiment comprises an enlarging component for enlarging at least one pulse of a first output waveform PWM_P_TERN′ of the amplifier 50 by a first enlarging pulse, wherein the at least one pulse of the first output waveform PWM_P_TERN′ is symmetrically enlarged by the first enlarging pulse with respect to the center position of the at least one pulse; and a pulses generating component for generating at least one first compensating pulse comp_pulse_p and for adding the generated at least one first compensating pulse comp_pulse_p on a second output waveform PWM_N_TERN′ of the amplifier 50, wherein the at least one first compensating pulse comp_pulse_p has substantially the same width P as the first enlarging pulse and is added on the second output waveform PWM_N_TERN′ at a position which corresponds to the center position of the at least one pulse of the first output waveform PWM_P_TERN′.
Some aspects of the present disclosure relate to a low-noise amplifier (LNA) having a balun configuration. The LNA includes a DC current path coupling a first DC supply node to a second DC supply node. First and second output nodes and first and second input nodes are spaced apart along a length of the DC current path. A single-ended radio frequency (RF) input terminal is configured to deliver a single-ended RF signal to the first and second input nodes. A differential RF output terminal is made up of the first and second output nodes. The first and second output nodes are configured to cooperatively establish a differential output signal based on the single-ended RF signal. Other devices and methods are also disclosed.
Provided is a method for evaluating a solar cell incorporated into a solar module. A PL evaluation step is performed. The PL evaluation step is a step for evaluating the solar cell to be evaluated among a plurality of solar cells (10) by illuminating the solar cell (10) with light from a light source (20) and detecting the intensity of photoluminescent light (L2) emitted by the solar cell (10). The light is irradiated while a light-blocking member (21) is provided between the solar module (1) and the light source (20) so that light from the light source (20) is not incident on portions of the solar module other than the solar cell (10) to be evaluated.
An apparatus includes an integrated circuit (IC) adapted to be powered by a positive supply voltage. The IC includes a charge pump that is adapted to convert the positive supply voltage of the IC to a negative bias voltage. The IC further includes a bidirectional interface circuit. The bidirectional interface circuit includes an amplifier coupled to the negative bias voltage to accommodate a bidirectional input voltage of the IC. The bidirectional interface circuit further includes a comparator coupled to the negative bias voltage to accommodate the bidirectional input voltage of the IC.
A motor drive system includes a power sub-assembly that comprises power electronic components and driver circuitry for controlling gate drive signals to the power electronic components. A control sub-assembly is removably mounted to the power sub-assembly and comprises control circuitry for implementing a motor control routine for control of an electric motor. In operation, all control signals originate in the control-subassembly, and are transmitted via mating connectors to the power sub-assembly for driving the motor.
A regulating method and device for loss-optimized operation of a separately excited synchronous machine having a stator and a rotor are provided. The method may include: providing reference values for stator and rotor currents, wherein the reference value for the stator current and/or the reference value for the rotor current or an auxiliary parameter representing the reference value of the stator current and/or an auxiliary parameter representing the reference value of the rotor current is dependent on a predefined reference torque; providing maximum values for stator and rotor currents; comparing reference values for the stator and/or rotor currents or an auxiliary parameter representing the reference value of the stator current and/or an auxiliary parameter representing a reference value of the rotor current to the corresponding maximum values and reducing of the reference torque by a torque value if at least one reference value reaches or exceeds the corresponding maximum value.
In a synchronous machine starting device, a timing detection unit outputs a first position signal indicating a timing at which a value of an armature voltage passes a prescribed reference level. A feedback operation unit calculates an error of an estimated phase based on the estimated phase, an estimated rotational speed of a rotor, an armature voltage, and an armature current, updates the estimated phase and the estimated rotational speed based on the calculated phase error, and outputs a second position signal indicating the updated estimated phase. A frequency detection unit detects a current rotational speed of the rotor based on the first position signal, as an initial value of the estimated rotational speed. A selector circuit selects the first position signal and the second position signal in this order, and outputs a selected position signal to the power conversion control unit.
A pulse-width modulation (PWM) inverter controller compensates for harmonics in the output current provided by a PWM inverter to permanent magnet (PM) motor. The PWM inverter controller includes a field-oriented controller (FOC) that monitors output currents provided by the PWM inverter to the PM motor and employs the monitored output currents in a current loop feedback that generates control signals. A harmonic compensator transforms monitored phase currents into rectangular waveforms having magnitudes modified based on detected harmonics within the monitored phase currents to generate compensation signals. The compensation signals generated by the harmonic compensator are summed with the control signals generated by the FOC to generate compensated control signals. A PWM signal generator generates PWM signals for controlling the PWM inverter based on the compensated control signals.
A transducer for generating electrical energy from an expected force includes a single crystal ferroelectric material having a phase transition stress level. Mechanical stress is provided to this crystal at a level approaching the phase transition stress level, such that the expected external force will cause the phase transition. At least two electrodes are joined to the single crystal for receiving electrical energy created by the phase transition. The electrodes can be joined to conditioning and storage circuitry. In further embodiments, the phase transition is induced by an expected temperature change.
An energy harvesting device using auxetic materials includes a first auxetic conductive electrode layer. A second auxetic conductive electrode layer is associated with the first auxetic conductive electrode layer. The auxetic conductive electrode layers have negative Poisson ratios. At least one dielectric elastomer layer is associated in layered orientation between the first and second auxetic conductive electrode layers.
The disclosure pertains to a method of charging or discharging a capacitive element, such as a piezoelectric crystal. The disclosure also pertains to a device that implements charging of a capacitive element according to said method. The device comprises a bipolar buck-boost converter, whereby a capacitive element can be charged with both positive and negative voltages. The discharge of the capacitive element is provided with energy recovery and feedback to the device's power supply.
Leakage current through stray or parasitic capacitance (which is particularly large in devices such as photovoltaic cell arrays and which are damaged by such leakage currents) due to common mode switching noise in a full bridge single phase power converter is reduced at high frequencies by magnetically coupling the two phase legs on the AC side of the power converter and connecting mid points of the AC and DC sides of the power converter and is reduced at low frequencies by use of a feedback arrangement that modifies sinusoidal modulation of the switches of the full bridge converter to function as an active filter. The magnetic coupling for the two phase legs is designed in a simple manner to avoid saturation based on volt-second considerations.
The present disclose relates to a power active buck power factor correction device, comprising: a AC source; a rectifying device coupled to the AC source for receiving and rectifying the AC source so as to generate an input voltage; a first converting device coupled to the assistance device for receiving, transmitting, converting and storing energy; a load coupled to the first converting device; and an assistance device coupled to the first converting device for generating an assistance voltage. Specifically, the polarity of the assistance voltage is same with the input voltage, but is contrary to an output voltage, so that the first converting device may continue to work and receive an input current under the input voltage is smaller than the output voltage while the discontinue time of the input current is getting shorter so as to obtain the perfected power factor correction effect.
During startup of a DC/DC converter having a high-frequency transformer whose primary winding is supplied with current from an input-side DC link via an inverter bridge having pulsed switches and whose secondary winding is used to charge an output-side DC link via a rectifier bridge. The switches of the inverter bridge are operated to load the output-side DC link, in a manner that deviates from a normal operation of the switches in order to limit the currents that flow in the DC/DC converter during startup of the DC/DC converter. Particularly, the switches of the inverter bridge are operated during startup of the DC/DC converter at a pulse width that is fixed during each of a limited number of stages of the startup, and have a duty cycle that is not more than 5 percent during each of the stages of the startup.
System and method for regulating a power converter. A system for regulating a power converter includes a controller, a first switch, and a second switch. The controller is configured to generate a first switching signal and a second switching signal. The first switch is configured to receive the first switching signal, the first switch being coupled to an auxiliary winding of the power converter further including a primary winding and a secondary winding. The second switch is configured to receive the second switching signal and coupled to the primary winding of the power converter. The controller is further configured to, change, at a first time, the second switching signal to open the second switch, maintain, from the first time to a second time, the first switching signal to keep the first switch open, and change, at the second time, the first switching signal to close the first switch.
A motor driving device includes a converter that converts an input alternating current into a direct current, an inverter that inverts the direct current output by the converter into an alternating current for driving a motor, a voltage detecting unit that detects a voltage on a direct current output side of the converter, and a numerical control unit that causes the inverter to output a reactive current to increase electric power consumed in the motor, when the voltage detected by the voltage detecting unit exceeds a predetermined threshold.
The invention proposes a voltage regulating device having a switch in an electrical circuit between a first node (30, 140) and a second node (40, 130), comprising a first field effect transistor (21, 110) and a second field effect transistor (22, 120) connected in cascade. The switch is controlled by: —setting the gate (G1,G3) of the first transistor to a first electrical potential, and, —to close the switch, setting the gate (G2, G4) of the second transistor to the first potential, or —to open the switch, setting the gate of the second transistor to the electrical potential of the second node, with the difference between the first potential and the second potential then being adapted to allow opening the first transistor and the second transistor. The switch can be used in a switched-mode power supply.
A semiconductor device is provided with: a semiconductor element; and a connecting conductor that electrically connects at least one of an input terminal and an output terminal of the semiconductor element to a connection terminal of an electronic device. In this semiconductor device, the connecting conductor is a block structure.
A bidirectional low voltage power supply (LVPS) for providing power to motor drive electronics. The bidirectional LVPS includes two simple, discrete converters. A first converter is used to provide power to an output and the second converter recycles power from the output to the power source. The first converter powers the drive electronics which drives the motor. During an operating process, the first converter shuts off and the second converter turns on to recycle power from the motor to the power source.
A rotor (11) with a squirrel cage and permanent magnets (19) mounted on and distributed around the circumference of the rotor, including a core stack extending over the entire rotor region with longitudinally continuous rotor slots extending over the length of the core stack. The squirrel cage is constructed with cage bars disposed, and preferably cast, in the rotor slots; short circuit rings connect the cage bars at both end faces of the core; and the radius of the rotor region is reduced by at least the radial thickness of the magnets. The radius of rotor (11) is reduced over the entire length between short circuit rings (17) such that the radial height of cage bars (15, 29) or cage webs (27) connected thereto is reduced. Also an electric motor or a radial pump having such a rotor, and methods of producing or operating such devices.
A rotor having an improved structure capable of achieving an enhancement in durability and a motor having the rotor are disclosed. The rotor is configured to co-operate with a stator in an electromagnetic manner such that the rotor rotates. The rotor includes a sleeve having a shaft hole, through which the motor shaft extends, rotor cores spaced apart from one another in a circumferential direction of the rotor, and at least one of permanent magnets disposed between adjacent ones of the rotor cores such that the permanent magnets are arranged in a radial manner about the sleeve. First and second cover plates are disposed at opposite sides of the permanent magnets in an axial direction. The first and second cover plates have plate holes respectively corresponding to the through holes of the rotor cores. The rotor cores and the first and second cover plates are coupled by fastening members.
A linear motor air-cooling structure includes two cooling sections. Each cooling section has an elongated board-shaped main body. The main body is attached to a lateral side of the stator of the linear motor. An air flow way is formed in the main body. The external air can be uniformly guided through the air flow way and distributed to every part of the linear motor. Accordingly, in operation, a better air-cooling effect is provided for the linear motor.
A stator structure which enables coils to be fitted over teeth while the circularity of the stator core and the parallelism between the end surfaces of the stator core are maintained. A stator structure is provided with: a stator core which is formed by stacking steel plates and which comprises a yoke and teeth; and coils which are fitted over the teeth so as to surround the teeth. A cut is formed only in one part of the yoke, and the cut is opened. Opening the cut allows the coils to be fitted over the teeth while the circularity of the stator core and the parallelism between the end surfaces of the stator core are maintained.
A generator is provided that includes at least one pole set representing one phase. Each pole set includes a plurality of poles. Only one conductor is turned about the poles of a particular pole set such that only half a single turn is associated to each pole of the particular pole set.
A transmission-guard is disclosed for preventing an inductive power outlet from transmitting power in the absence of an inductive power receiver. A transmission lock is associated with an inductive power outlet and a transmission key is associated with an inductive power receiver. The transmission lock is configured to prevent a primary inductor from connecting to the power supply unless triggered by a release signal via the transmission key.
Energy management on board an aircraft includes: a plurality of thermal and electrical energy sources, a plurality of loads which are capable of being supplied with power by the various energy sources, among which at least one load is capable of being supplied with power by an electrical energy source and by a thermal energy source, and real-time management means for energy transfers from the various energy sources to the various loads as a function of the present and future energy requirement of the various loads and the present and future availability of the various sources, with the management means providing a permanent and standardized correlation between thermal and electrical energies.
Systems and methods for monitoring power in power distribution systems are provided. In one aspect, a system for monitoring power includes a power monitoring device that measures a value of at least one characteristic of power provided to a branch of a power distribution system. The power monitoring device includes an output that provides the value measured. The system further includes a controller having an input to receive the value measured and an output that couples to a first device powered by the branch to send a maximum power signal to the first device to command the first device to operate at a percentage of maximum power.
An electricity distribution system includes an electricity supply control unit that receives information on power consumption, estimates the current and the future power consumption, and controls the supply of electricity to the electric device; an information display unit that displays information on a power use situation of an electric device electrically connected with the electricity supply control unit; and a battery server that accumulates power, in which the electricity supply control unit communicates the information on the power consumption with a new electric device when the new electric device is electrically connected, and when the amount of available power is exceeded by supplying electricity to the electric device, does not supply electricity to the electric device, makes the information display unit display that the amount of available power is exceeded by supplying electricity to the information display unit, and determines whether to use the power accumulated in the battery server.
A charge notification system or user-selectable charge configuration for a vehicle. The system includes a battery, a charging connector, a charging cable, a charge location, a processor and a memory. The processor of the vehicle determines, based upon logic steps or parameters stored in the memory, when to send messages to a remote device based upon a charging characteristic of the vehicle. Different messages may be generated by the processor and transmitted for different charging characteristics of the vehicle. The charge notification system may also include an indicator local to the vehicle and configured to illuminate in varying configurations or at varying frequencies based upon a state of charge of the battery. A user may select between charging modes for the vehicle in order to extend a useable life of the battery by allowing the battery to charge up to predetermined or modifiable battery charge levels.
A semiconductor integrated circuit that protects a secondary battery by controlling an on/off status of a discharge control switch and a charge control switch includes an over discharge detection part configured to detect an over discharge condition based on a battery voltage of the secondary battery, a load removal detection part to detect whether a load connected to the secondary battery is removed based on a voltage of a load removal detection terminal connected to a negative electrode side of at least one of the load connected to the secondary battery and a battery charger through a resistor, an over discharge return part to return to a normal condition from the over discharge condition, and a control part to output a control signal for returning the over discharge condition to the normal condition to the over discharge return part upon detecting the load being removed in the over discharge condition.
A DC surge protection circuit for protecting hardware from surges. During operation when no surge condition is present, the circuit passes signals from an input to an output through an inductance. When a surge is present, the circuit conducts a portion of the surge through at least one diode and diverts the surge to a ground node. A gas tube begins to conduct a portion of the surge above a first voltage level after the at least one diode first begins to conduct. A first MOV begins to conduct a portion of the surge above a second voltage level after the gas tube begins to conduct. The circuit may include a status portion. The circuit may be within an enclosure for plug-in to a motherboard or within an enclosure of an in-line connector for connection with a cable. The circuit may be configured to attach directly to a frame.
An overvoltage battery protection circuit includes a voltage comparator configured to compare a scaled version of a voltage with a voltage reference and indicate an overvoltage condition when the scaled voltage exceeds the voltage reference. The voltage comparator is powered by a first voltage domain. The circuit further includes a first transistor coupled to an output of the voltage comparator and configured to turn on when the voltage comparator indicates the overvoltage condition and generate an overvoltage signal for at least one external device. The circuit further includes a second transistor coupled to the overvoltage signal and configured to turn on when the overvoltage signal is asserted and force the overvoltage signal to remain asserted independent of the first voltage domain. The first and second transistors are powered by a second voltage domain.
A circuit interrupter for a power circuit includes separable contacts, an operating mechanism structured to open and close the separable contacts, and a trip circuit cooperating with the operating mechanism to trip open the separable contacts. The trip circuit includes a number of hardware circuits having a processor with a number of routines. The routines provide a number of protective functions structured to detect a number of faults of the power circuit, a number of repetitive test functions for the number of hardware circuits, and a supervisory function cooperating with the number of repetitive test functions. The supervisory function is structured to prevent availability of protection by the number of protective functions from falling below a predetermined threshold as a result of a plurality of intermittent error conditions of the number of hardware circuits.
Systems and methods for heaters used in treating a subsurface formation are described herein. Certain embodiments relate to systems for insulated conductors used in heater elements. More particularly, fittings for splicing together insulated conductors and/or insulated conductors to other conductors are described.
A cable termination device of the dry type, including an insulator housing with an upper end and a lower end and having a hollow interior, which lower end has an opening for insertion of the cable. The device further includes a stress controller device located inside the insulator housing and adapted to be mounted on a high voltage cable, and an electrically insulating gel filling at least part of the hollow interior of the insulator housing and surrounding at least part of the stress controller device. Further, the stress controller device extends from the lower end of the insulator housing and into the housing where it has a free end, whereby a space is formed between the stress controller device and an inner wall of the insulator housing.
A strain relief and cable retention assembly for retaining a cable to a casing includes an anchor made of a flexible material. An internal bore along an axis of the anchor is sized to fit an outer jacket of the cable. Tabs extend away from the bore along axes perpendicular to the axis of the bore. A plate made of a stiff material extends along the tabs of the anchor. A section of the anchor passes through the plate such that the plate rests flat against the tabs between the tabs and a face of a casing. Reinforcing fibers from the cable are tied around the plate and the tabs, distributing stress from the cable to the plate and casing.
A box made of plastic or any other rigid material that is designed to store a multi-socket extension and excess cables. The box includes a frame, top cover, bottom cover, and inner tray. The covers are installed over the frame using sliding tracks. The inner tray is installed in the frame and serves as a partition between the box's upper part and lower part. First, the inner tray is installed in the frame. The bottom cover is then assembled. The multi-socket extension is placed on the inner tray. The excess cables are now placed inside the box preferably in the space beneath the inner tray and the box is closed with the top cover.
A direct spark igniter for a fuel-fired heating appliance is provided with enhanced ignition performance in environments having substantial levels of both moisture and pollution. Such enhanced ignition performance is representatively achieved by the combination of (1) forming external annular ribs on the ceramic body portion of the igniter; (2) extending a top end of the igniter electrode rod into the body portion; (3) bending the igniter electrode and ground rods and angling them toward one another; and (4) knurling external side surfaces on lower end portions of the igniter electrode and ground rods.
A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
A system for circulating an alkali vapor to operate as, for example, a gain medium in a diode pumped alkali laser. The system includes a pump configured to pump a buffer gas to a metal source. A source heat exchanger heats the alkali metal source to produce a metal vapor that flows with the buffer gas. An action chamber receives the metal vapor and buffer gas combination and contains the combination while the metal vapor performs its required functions. The metal vapor and buffer combination continue to flow to a metal vapor trap and heat exchanger that cools the metal vapor and buffer gas combination. The metal vapor trap collects alkali metal condensate as the combination cools. The diffuser transport channel provides an inflow of clean buffer gas to the pump. The pump provides a circulating gas flow through the closed loop system.
A method, system and apparatus for automatically determining operating conditions of a periodically poled lithium niobate crystal in a laser system are provided. The system comprise: a laser; a periodic poled lithium niobate (PPLN) crystal for receiving laser input from the laser; a temperature control device for adjusting the temperature of the PPLN crystal; a temperature sensor for monitoring the temperature of the PPLN crystal; and a computing device. While the PPLN crystal is receiving laser input, temperature of the PPLN crystal is changed using the temperature control device. The computing device monitors the temperature of the PPLN crystal and corresponding power of the temperature control device during the changing, the temperature monitored using the temperature sensor. The computing device determines one or more of operating conditions of the temperature control device and an operating temperature of the PPLN crystal from a function of the power vs. the temperature.
A terminal crimping apparatus, which crimps a crimping part of a terminal onto a conductor at an end part of an electric wire, includes: an anvil which supports a bottom part of the crimping part in a mounted manner; and a crimper disposed so as to move in proximity to and apart from the anvil. A plurality of anvil-side crimping surfaces are formed in the anvil along a longitudinal direction of the conductor, the respective anvil-side crimping surfaces being formed so as to be continuous from each other without a step, in a substantially center part in a width direction thereof, along the longitudinal direction of the conductor and have curved surface shapes different from each other in both side parts thereof.
A connector is mateable with a mating connector along a first direction. The mating connector has a mating contact portion. The connector comprises a housing and a contact. The housing has a holding portion and a stop portion. The contact has a held portion, a pressed portion and a contact point. The held portion is held by the holding portion. The pressed portion is provided between the held portion and the contact point. The contact point is located between the held portion and the pressed portion in a second direction perpendicular to the first direction. The contact point is brought into contact with the mating contact portion and moved in the second direction under a mated state of the connector with the mating connector. The pressed portion is pressed against the stop portion when the contact point is brought into contact with the mating contact portion.
A dual SIM card tray and an electrical connector device are disclosed. The electrical connector device comprises a tray and a connector module. The dual SIM card tray has a first receiving groove and a second receiving groove, which are positioned at two opposing sides, for respectively loading a mini-SIM card and a micro-SIM card, and has a first window communicated with the first receiving groove and a second window communicated with the second receiving groove. The first window and the second window are arranged in a lengthwise direction of the tray, so that conductive pads of the two SIM cards are exposed toward the same side. The connector module includes first and second connectors and an outer shell.
An electronic card connector comprises an insulating body defining a bottom surface and a top surface opposite to the bottom surface, and a plurality of terminals contained in the insulating body. Each terminal comprises a base comprising a main portion, a spring portion extending from the base, a contact portion extending from the spring portion to outside of the insulating body, a first soldering portion recessed in a first end of the base and a second soldering portion separated from the first soldering portion. The first soldering portion and the main portion form a slit therebetween.
A circuit board assembly is provided. The circuit board assembly includes: a first circuit board; a second circuit board; a bracket for supporting the second circuit board; and an interconnect apparatus for a connection and a disconnection of the first circuit board and the second circuit board, wherein the interconnect apparatus includes a first connector disposed on the first circuit board and a second connector disposed on the second circuit board (one is a male connector and the other is a female connector). The circuit board assembly includes a lifting and lowering apparatus for vertically lifting or lowering the bracket so that after the connection the second connector is vertically disconnected from the first connector and after the disconnection the second connector is vertically connected to the first connector. An electronic device having the circuit board assembly is further provided.
A spring lock connector includes a female connector (F) with a lock arm (27) capable of releasing locking by lifting up the spring. Left and right protection walls (18) are arranged at opposite left and right sides of the lock arm (27). Left and right resilient pieces (28) extend in forward and backward directions between the lock arm (27) and the protection walls (18) for coupling the lock arm (27) to the protection walls (18). Left and right displacement preventing walls (20) are provided at an interval narrower than the protection walls 18 below the protection walls (18). A rear part of the lock arm (27) is fit into a clearance between the both displacement preventing walls (20) together with the resilient pieces (28) when the lock arm (27) is unlocked, thereby preventing lateral displacements of the lock arm (27).
A bolt (10) includes a flange (14) that bulges radially out near a head (12) at one axial end. The flange (14) contacts a second connector (60) at a proper connection to prevent further tightening. A stepped recess (16) is located between the head (12) and a screw portion (13), and is recessed sufficiently to fracture when an excessive tightening torque is applied. A retaining groove (18) is located between the stepped recess (16) and the screw portion (13) and is recessed radially inwardly and receives a retaining ring (80) for preventing detachment of the bolt (10) from a first connector (40) by contacting the first connector (40) before connection. Seal grooves (15) are located between the stepped recess (16) and the flange (14) for receiving seals (30) to be held in close contact with the first connector (40) in a liquid-tight manner at the time of proper connection.
The instant disclosure relates to a wire-to-board connector assembly including a board-end connector and a wire-end connector. The board-end connector has a first insulative housing, a pair of restricting components and a pair of elastic elements. The first insulative housing has a transverse portion and a pair of side walls. The pair of restricting components is movably assembled to the pair of side walls, and has a suppressing portion, respectively. The wire-end connector has a second insulative housing and a plurality of wires. Two sides of the second housing have a wing portion and a blocking bump located above the wing portion, respectively. When the wire-end connector is assembled to the board-end connector, the wing portion is located under the suppressing portion, and the blocking bump is disposed before the front end of the suppressing portion so as to limit the displacement of the wire-end connector.
A contacting system, comprising: an essentially cylindrical contact body having at least a first opening, a second opening and a contact body interior between the first opening and the second opening. The first opening is embodied for accommodating the cable, wherein a holding element is provided in the contact body interior and is so embodied that it produces contact between the first conductor and the contact body. A sealing element is provided at the first opening and is so embodied that it seals off the contact body interior from the medium.
A receptacle connector includes a main body, an insulating base, a tenon member, a compressing spring, and a cap body. The main body includes a first concave area. The insulating base includes a second concave area. The first and the second concave area constitute a joint cavity and an opening. The tenon member erected on the bottom surface of the first concave area and is threaded through the compression spring. The cap body includes a sheath portion slidably threaded through the tenon member and a cover portion occupied a part of the opening. The sheath portion is connected to the compression spring and when the sheath portion of the cap body compresses the compression spring, the cover portion of the cap body is capable of moving from a closing position to an accessing position relative to the opening.
In a crimp terminal (1) with a conductor crimp portion (11) having recessed serrations in the inner surface (11R), circular recesses (20) as serrations are provided in an inner surface (11R) of the conductor crimp portion (11) to be scattered so as to be spaced from each other before the conductor crimp portion (11) is crimped to a conductor (Wa) of an electric wire (W). A strip-shaped serration non-forming region (22) is provided in an intermediate portion in a front-back direction of the conductor crimp portion (11) and formed without the recesses (20).
A wire connecting device for connecting a fiber-core conductor configured by stranding a plurality of fiber-core conductive wires. The wire connecting device includes a vis having a rod-shape pin and a head extending outwardly from the pin. A plate-shape terminal connects with the vis by inserting the pin in an opening. The head matches up with an overlap portion of the terminal so that the fiber-core conductor is clamped between the head and the overlap portion of the terminal connect electrically the fiber-core conductor and the terminal. The conductor passes over and contacts an end portion of the pin. The pin and the inner surface of the opening are curved surfaces to eliminate sharp corners.
A cover for an empty rail missile launcher that can be used in flight. The cover is shaped to reflect radar signals transmitted by a radar transmitter away from the radar transmitter to reduce detectibility by radar. The cover may also be coated with radar absorbent material to reduce detectibility by radar. Hangers are used to mount the cover to the rail missile launcher. The cover is provided with a grounding mechanism to dissipate precipitation static. A restraint mechanism is provided to prevent the cover from inadvertently sliding off the rail missile launcher.
Embodiments of the invention provide several antenna designs that exhibit both high bandwidth and efficiency, such as for operation in one or more bands, such as but not limited to operation in 3G, 4G, LTE bands. A first aspect of the invention concerns the form factor of the enhanced antenna; a second aspect of the invention concerns the ease with which the enhanced antenna is manufactured; and a third aspect concerns the superior performance exhibited by the enhanced antenna across one or more bandwidths.
The reflectarray includes a plurality of cells integrated in a PCB and externally illuminated by an input signal from a feeding source at a frequency fi, and an output signal is reflected, where each cell of the reflectarray is an AIA formed by a passive radiating element connected to an active circuit, which can be either an oscillator, or a push-push oscillator or a SOM, where the passive radiating circuit is placed on a reflective surface forming a side of the reflectarray and the active circuit is placed on the reverse side, the active circuit producing an output signal with a frequency related to the input frequency fi and the oscillation frequency fosc of said active circuit. This phase relationship is determined by an output phase variation, which is controlled by electronic means integrated in the reflectarray system, which allows an output phase variation interval even higher than 180°.
A multi-band antenna suitable for an electronic device is provided. The electronic device has a metal shell. The multi-band antenna includes a ground portion, a radiating portion and a feeding portion. The ground portion has a ground plane. The radiating portion has at least one radiating section and a short-circuit section. An extending direction of the radiating section is parallel to the ground plane. The short-circuit section is electrically connected between the radiating section and the ground plane. The ground portion is adapted to obstruct a path between the metal shell and the radiating section. The feeding portion is electrically connected to the radiating section.
A connector with a capacitively coupled connector interface for interconnection with a mating portion with a sidewall. A connector body has an outer conductor coupling surface at an interface end, covered by an outer conductor dielectric spacer. The outer conductor coupling surface is dimensioned to seat, spaced apart from the sidewall by the outer conductor dielectric spacer, when the connector body and the mating portion are in an interlocked position. A releasable retainer may be provided, the releasable retainer dimensioned to secure the connector body and the mating portion in the interlocked position.
A resonant circuit and an antenna device achieve a low resonance frequency without increasing a coil size, and improve communication performance. In the resonant circuit, two coil-shaped conductors are arranged so as to be opposed to each other with a dielectric sheet interposed therebetween. The two coil-shaped conductors are, at the opposed portions thereof, coupled with a capacitance interposed therebetween, and wound so that electric currents flowing through the respective conductors trend in the same direction in a planar view. The opposed area in at least a portion of the outermost windings and/or innermost windings of the coil-shaped conductors is larger as compared with the opposed area in any other winding, and the respective ends of the conductors define power feeding units.
A broadband waveguide incorporates various reflection suppression techniques to reduce reflections in signals communicated thereby. The waveguide includes one or more filaments that each include a first and second end. A first matrix may be configured proximate the first end(s) while a second matrix may be configured proximate an intermediate location between the first and second ends. A damping material may cover a portion of the filament(s) that extends from the second matrix to the second end(s) (including the second end(s) themselves) and/or the second end(s) of the filament(s) is/are shaped to at least partially suppress reflections of the signal therefrom. When configured with multiple filaments, at least two of the filaments may have differing lengths that extend from the second matrix and also operate to at least partially suppress reflections of a signal.
A filter includes a first printed circuit board (PCB), poles mounted on the first PCB, a second PCB located at a top of the first PCB, and caps mounted on the second PCB and covering the poles. Each the cap surrounds the corresponding pole. The cap and the pole cooperatively form a resonator. Each the first PCB and the second PCB is made of light, dielectric material with metallic layers.
An electrical combination including a power tool and a battery pack. The power tool includes power tool terminals. The battery pack is configured to be interfaced with the power tool. The battery pack includes a battery pack housing, at least three terminals, and a plurality of battery cells. The battery pack terminals include a positive terminal, a negative terminal, and a sense terminal. The at least three terminals are configured to be interfaced with the power tool terminals. The plurality of battery cells are arranged within and supported by the battery pack housing. Each of the battery cells has a lithium-based chemistry and a respective state of charge, and power is transferable between the battery cells and the power tool. A circuit is configured to monitor the battery cells, detect a charge imbalance among the battery cells, and prevent the battery pack from operating when the charge imbalance is detected.
An energy transformer for a battery system is disclosed. The energy transformer includes a plurality of DC/DC converters each having a first and a second input and a first and a second output. The first output of a first of the DC/DC converters is connected to a first output of the energy transformer and the second output of a last of the DC/DC converters is connected to a second output of the energy transformer. The first and second inputs are designed for connecting a battery module. The DC/DC converters are connected in series on the output side. The energy transformer has a plurality of first diodes each of which have an anode connected to the first input of one of the DC/DC converters and a cathode connected to the second input of another DC/DC converter so that the DC/DC converters are connected in series on the input side and via a second diode having an anode connected to the first input of the first of the DC/DC converters and a cathode connected to the first output of the energy transformer.
There are a secondary battery having a pouch-type outer casing and a manufacturing method thereof. In one embodiment, a secondary battery includes an electrode assembly and an outer casing. The electrode assembly has positive and negative electrode plates, a separator interposed therebetween, and positive and negative electrode tabs having one ends respectively connected to the positive and negative electrode plates. The outer casing accommodates the electrode assembly so that the other ends of the positive and negative electrode tabs are extracted from a first side to the exterior thereof. The outer casing has a sealing portion sealed at least twice. The sealing portion is primarily sealed to be fractured under a predetermined internal pressure of the outer casing. After the aging of a battery, the sealing portion is fractured under the predetermined internal pressure, thereby exhausting internal gas. After the exhaustion of the internal gas, the sealing portion is secondarily sealed.
A secondary battery electrode includes an active material layer configured to be provided on a current collector and be obtained by stacking a plurality of active material sub-layers composed of an active material. Pores of which pore diameter along a thickness direction of the active material layer is 3 to 300 nm are formed along a boundary between the active material sub-layers, and at least a part of the pores is filled with an electrolyte and/or a product arising from reduction of the electrolyte upon assembling of a secondary battery.
A lithium secondary battery and a method for producing the lithium secondary battery. The lithium secondary battery includes a negative electrode 1 in which negative electrode mixture layers 2 and 3 that contain active material particles containing silicon and/or a silicon alloy and a binder are disposed on the surfaces of a current collector 4. A electrode body is formed by spirally winding, from inside to outside, a laminate body; and in an outer end portion of the negative electrode 1, the negative electrode mixture layers 2 and 3 have tapering portions 2a and 3a whose thicknesses decrease toward ends 2b and 3b of the negative electrode mixture layers 2 and 3; and oozing portions 2d and 3d mainly containing the binder are formed at the tips of the tapering portions 2a and 3a of the negative electrode mixture layers 2 and 3.
A sheet-form electrode for a secondary battery includes a current collector; an electrode active material layer formed on one surface of the current collector; a porous organic-inorganic layer formed on the electrode active material layer and including inorganic particles and a polymer binder; and a first porous supporting layer formed on the porous organic-inorganic layer. The sheet-form electrode for a secondary battery has supporting layers on at least one surface thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
A battery housing device includes a case configured to house a battery and having a plus terminal and a minus terminal, a plus pole spring provided in the case and having one end connected to the plus terminal and an opposite end configured to come in contact with a plus pole of the battery, a minus pole spring provided in the case and having one end connected to the minus terminal and an opposite end configured to come in contact with a minus pole of the battery, and a battery support configured to support a bottom face of the battery and to support a side wall of the battery. The battery can be attached to and detached from the battery support in a length direction of the battery.
Provided are a tri-block copolymer and an electrolyte membrane prepared therefrom. The tri-block copolymer has a structure of polar moiety-containing copolymer block/non-polar moiety-containing copolymer block/polar moiety-containing copolymer block, or non-polar moiety-containing copolymer block/polar moiety-containing copolymer block/non-polar moiety-containing copolymer block, and is useful for an electrolyte membrane for fuel cells. The electrolyte membrane for fuel cells prepared from the tri-block copolymer exhibits superior dimensional stability and excellent fuel cell performance.
A self-humidifying fuel cell is made by preparing a porous substrate, coating the substrate with a zeolitic material (or a graphene derivative) and filling the pores with a mixture of graphene derivative and proton-conducting material (or a proton-conducting material). The coating of the substrate includes selecting a zeolitic material, and applying coating on the pore walls and surface of the porous substrate, to form zeolitic material-coated pores. The resulting composite material is used as a self-humidifying proton-conducting membrane in a fuel cell.
A bi-polar electrode having ion exchange polymers on opposite faces of a porous substrate is formed using a method that includes providing an electrode substrate with activated carbon layers on opposite faces of the electrode substrate, wherein said faces have an outer perimeter band void of the activated carbon layers. Gaskets are placed against the outer perimeter band of the electrode substrate void of activated carbon and the electrode substrate is clamped between two rigid plates to form a first airtight chamber on one side of the electrode substrate and a second airtight chamber on the opposite side of the electrode substrate. A first polymerizable monomer mixture having an anion exchange group is added into the first chamber and a second polymerizable monomer mixture having a cation exchange group is added into the second chamber. The first and second polymerizable monomer mixtures are then polymerized in an oven.
A battery pack assembly and a method of making the same. The method includes using lifters with a cammed conveyor delivery mechanism to facilitate edgewise stacking of generally planar battery cells. The lifter spacing and cam profile are designed in such a way as to orient individual battery cell tabs and cooling fin assemblies to keep them close together but without applying significant forces to the stackable components. Combining conveyor streams allows components to be processed in parallel and sequenced correctly onto a single conveyor. Use of lifter integrated conveyor belt with cams and guides for individual battery cell orientation and sequencing promotes high speed assembly without a need to change component directions. The use of high-speed component delivery high is compatible with allowing more component placement variation, while the edgewise orientation of the components being assembled permits the use of small manufacturing footprints.
A method of manufacturing an Organic Light Emitting Diode (OLED) pixel is disclosed. The method includes forming an anode and forming a pixel definition layer. The pixel definition layer includes a first sub-pixel area, a second sub-pixel area, a third sub-pixel area corresponding to the third sub-pixel, and a pixel spacing area. The first sub-pixel, the second sub-pixel and the third sub-pixel are separated from each other by the pixel spacing area. The method also includes coating a long-chain fatty acid ester layers on the pixel spacing area, the second sub-pixel area, and the third sub-pixel area, coating light emitting layers on the sub-pixel areas and on the long-chain fatty acid ester layers, and ashing the substrate and removing the long-chain fatty acid ester layers to form light emitting patterns. The method also includes forming a cathode.
A display device and a method of manufacturing the same. The display device includes a substrate, an organic light emitting diode (OLED) arranged on the substrate, a thin film encapsulation layer arranged on the substrate to cover the OLED and including an inorganic material layer and an organic material layer, and an anti-reflection layer arranged on the thin film encapsulation layer and including a dielectric layer and a metal layer.
An organic light emitting display apparatus includes a substrate, a light conversion layer on the substrate, the light conversion layer including an oxide semiconductor, a passivation layer covering the light conversion layer, a first electrode on the passivation layer, an intermediate layer on the first electrode, the intermediate layer including an organic emission layer, and a second electrode on the intermediate layer.
An organic EL element comprises: an anode; a cathode; a functional layer including at least a light-emitting layer; a hole injection layer disposed between the anode and the functional layer; and a bank. The hole injection layer contains tungsten oxide. Tungsten atoms constituting the tungsten oxide include both tungsten atoms with a valence of six and tungsten atoms with a valence less than six. The hole injection layer includes a crystal of the tungsten oxide. A particle diameter of the crystal is on an order of nanometers. The hole injection layer has a recessed portion whose inner side surface has an upper edge that is one of (i) aligned with part of a lower edge of the bank, the part being in contact with the light-emitting layer, and (ii) in contact with a bottom surface of the bank.
To provide a gate insulating material which has high chemical resistance, is superior in coatability of a resist and an organic semiconductor coating liquid, and has small hysteresis, a gate insulating film and an FET using the same by a polysiloxane having an epoxy group-containing silane compound as a copolymerization component.A gate insulating material containing a polysiloxane having, as copolymerization components, at least a silane compound represented by the general formula (1): R1mSi(OR2)4-m (1), wherein R1 represents hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group, a heteroaryl group or an alkenyl group and in the case where a plurality of R1s are present, R1s may be the same or different, R2 represents an alkyl group or a cycloalkyl group and in the case where a plurality of R2s are present, R2s may be the same or different, and m represents an integer of 1 to 3, and an epoxy group-containing silane compound represented by the general formula (2): R3nR4lSi(OR5)4-n-1 (2), wherein R3 represents an alkyl group or a cycloalkyl group having one or more epoxy groups in a part of a chain and in the case where a plurality of R3s are present, R3s may be the same or different, R4 represents hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group, a heteroaryl group or an alkenyl group and in the case where a plurality of R4s are present, R4s may be the same or different, R5 represents an alkyl group or a cycloalkyl group and in the case where a plurality of R5s are present, R5s may be the same or different, l represents an integer of 0 to 2, and n represents 1 or 2 (however, l+n≦3).
The present invention discloses a novel organic compound is represented by the following formula(A), the organic EL device employing the compound as blue emitting layer can lower driving voltage, prolong half-lifetime and increase the efficiency. Wherein m represent an integer of 0 to 8, n represent an integer of 0 to 10, p represent an integer of 0 to 7, HAr represent a hydrogen, a halide, a cyanine group, a substituted or unsusbstituted heteroaryl group system having 5 to 6 aromatic ring atoms, R1 to R4 are identical or different. R1 to R4 are independently selected from the group consisting of a hydrogen atom, alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 30 carbon atoms.
An oxadiazole derivative represented by the following general formula (G1) is synthesized and applied to the light emitting element, Am; wherein Am is a substituent represented by a general formula (Am1), (Am2), or (Am3); each of α, β1, and β2 represents an arylene group having 6 to 25 carbon atoms; each of Ar1 to Ar6 represents an aryl group having 6 to 25 carbon atoms; each of R1 to R3 represents hydrogen, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 25 carbon atoms; and R4 represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 25 carbon atoms.
A system is provided for enabling a source MTA to communicate with a target MTA via an SMTP proxy using SMTP commands for transmitting email messages in a networked environment. An email message may be received by a source mail transport agent (MTA) and the source MTA may route the incoming email message to a target MTA via an SMTP proxy. The SMTP proxy may serve as an intermediary proxy server for enabling the source MTA to communicate with an external and internal target MTA. The SMTP proxy may connect to a target MTA via a connection command, and the SMTP proxy may implement custom SMTP commands to communicate additional information about the source MTA to the target MTA. The system may additionally enable the SMTP proxy to perform actions designated by the SMTP commands and to communicate the result of the SMTP proxy's actions back to the source MTA.
A specific region of a polylactic acid sheet is heated by a microwave. To allow the polylactic acid sheet to exhibit piezoelectricity in the thickness direction of the polylactic acid sheet, a high voltage is applied to the heated polylactic acid sheet in the thickness direction of the polylactic acid sheet, and thereby the screw axes of at least a part of the polylactic acid molecules are relatively aligned with the thickness direction. Then the polylactic acid sheet is rapidly cooled, and thereby the polylactic acid molecules are immobilized. The same step is executed for other regions of the polylactic acid sheet, and thereby piezoelectricity is imparted to a wide area of the polylactic acid sheet in the thickness direction. The resultant piezoelectric sheet is capable of exhibiting a high piezoelectricity in the thickness direction.
The present disclosure describes a semiconductor MRAM device and a manufacturing method. The device reduces magnetic field induction “interference” (disturbance) phenomenon between adjacent magnetic tunnel junctions when data is written and read. This semiconductor MRAM device comprises a magnetic tunnel junction unit and a magnetic shielding material layer covering the sidewalls of the magnetic tunnel junction unit. The method for manufacturing a semiconductor device comprises: forming a magnetic tunnel junction unit, depositing an isolation dielectric layer to cover the top and the sidewall of the magnetic tunnel junction unit, and depositing a magnetic shielding material layer on the isolation dielectric layer.
Disclosed are an epoxy resin composition and a light emitting apparatus. The epoxy resin composition includes a triazine derivative epoxy resin and a silicon-containing alicyclic epoxy resin.
An optoelectronic component including a connection carrier including an electrically insulating film at a top side of the connection carrier, an optoelectronic semiconductor chip at the top side of the connection carrier, a cutout in the electrically insulating film which encloses the optoelectronic semiconductor chip, and a potting body surrounding the optoelectronic semiconductor chip, wherein a bottom area of the cutout is formed at least regionally by the electrically insulating film, the potting body extends at least regionally as far as an outer edge of the cutout facing the optoelectronic semiconductor chip, and the cutout is at least regionally free of the potting body.
A light emitting diode package includes a package body having a cavity, a light emitting diode chip having a plurality of light emitting cells connected in series to one another, a phosphor converting a frequency of light emitted from the light emitting diode chip, and a pair of lead electrodes. The light emitting cells are connected in series between the pair of lead electrodes.
A light emitting diode including a substrate, a p-type and n-type semiconductor layers, an active layer, a first and second electrodes is provided. The active layer is located between the n-type and p-type semiconductor layers, and includes i quantum wells and (i+1) quantum barrier layers, each quantum well is located between any two of the quantum barrier layers, each of k quantum wells among the i quantum wells is constituted of a light emitting layer and an auxiliary layer, in which an indium concentration of the auxiliary layer is greater than an indium concentration of the light emitting layer, where i and k are natural numbers greater than or equal to 1 and k≦i. The first electrode and second electrodes are located on the n-type semiconductor layer and the p-type semiconductor layer, respectively.
In a nitride semiconductor light emitting diode including a substrate made of a nitride semiconductor, a first conductive-type nitride semiconductor layer formed on the substrate, an active layer made of a nitride semiconductor, and a second conductive-type nitride semiconductor layer, characterized in that light emitted is extracted from the under surface side of the substrate or the upper surface side of the second conductive-type nitride semiconductor layer, an intermediate layer is formed between the substrate and the active layer, and dislocations is allowed to generates from the dislocation generating layer as the origin and to distribute in a light emitting region of the active layer.
An interface including roughness components for improving the propagation of radiation through the interface is provided. The interface includes a first profiled surface of a first layer comprising a set of large roughness components providing a first variation of the first profiled surface having a first characteristic scale and a second profiled surface of a second layer comprising a set of small roughness components providing a second variation of the second profiled surface having a second characteristic scale. The first characteristic scale is approximately an order of magnitude larger than the second characteristic scale. The surfaces can be bonded together using a bonding material, and a filler material also can be present in the interface.
An evaporation apparatus comprises a chamber configured to contain at least one dispensing nozzle and at least one substrate to be coated. The chamber has at least one adjustable shielding member defining an adjustable aperture. The member is positioned between the at least one dispensing nozzle and the at least one substrate. The aperture is adjustable in at least one of the group consisting of area and shape. The at least one adjustable shielding member has a heater.
A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1−xN (0
The present invention is premised upon an improved photovoltaic device (“PV device”), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.
A photo-voltaic (PV) power generating system and a control system for PV array string-level control and PV modules serially-connected into strings of PV modules. The system includes plural parallel strings of serially-connected power-generating photovoltaic modules that form a PV array, DC/DC micro-converters that are coupled to a DC voltage buss and to the output of a corresponding photovoltaic module or to the output of a string of photovoltaic modules; a gating or central inverter; and a control system. The micro-converters are structured and arranged to include at least one of: an active clamp device, a ground fault detection device, and a fractional power converter that injects power in series or in parallel with voltage or current from the power-generating portion onto the DC buss.
A method of fabricating a semiconductor device, the method including: forming a first mask pattern including a masking region and an open region on a substrate; forming a sacrificial layer to cover the substrate and the first mask pattern; patterning the sacrificial layer to form a seed layer and to expose the first mask pattern; forming a second mask pattern on the exposed first mask pattern; forming an epitaxial layer on the seed layer and the second mask pattern, and forming a void between the second mask pattern and the epitaxial layer; and separating the substrate from the epitaxial layer.
An epitaxial structure is provided. The epitaxial structure comprises a substrate, a carbon nanotube layer and an epitaxial layer stacked in that order. The substrate has an epitaxial growth surface and defines a plurality of first grooves and first bulges on the epitaxial growth surface. The carbon nanotube layer covers the epitaxial growth surface, wherein a first part of the carbon nanotube layer is attached on top surface of the first bulges, and a second part of the carbon nanotube layer is attached on bottom surface and side surface of the first grooves. The epitaxial layer is formed on the epitaxial growth surface, and the carbon nanotube layer is sandwiched between the epitaxial layer and the substrate.
The present teachings relate to various embodiments of an hermetically-sealed gas enclosure assembly and system that can be readily transportable and assemblable and provide for maintaining a minimum inert gas volume and maximal access to various devices and apparatuses enclosed therein. Various embodiments of an hermetically-sealed gas enclosure assembly and system of the present teachings can have a gas enclosure assembly constructed in a fashion that minimizes the internal volume of a gas enclosure assembly, and at the same time optimizes the working space to accommodate a variety of footprints of various OLED printing systems. Various embodiments of a gas enclosure assembly so constructed additionally provide ready access to the interior of a gas enclosure assembly from the exterior during processing and readily access to the interior for maintenance, while minimizing downtime.
A power semiconductor device includes a first layer of a first conductivity type, which has a first main side and a second main side opposite the first main side. A second layer of a second conductivity type is arranged in a central region of the first main side and a fourth electrically conductive layer is arranged on the second layer. On the second main side a third layer with a first zone of the first conductivity type with a higher doping than the first layer is arranged followed by a fifth electrically conductive layer. The area between the second layer and the first zone defines an active area. The third layer includes at least one second zone of the second conductivity type, which is arranged in the same plane as the first zone. A sixth layer of the first conductivity type with a doping, which is lower than that of the first zone and higher that that of the first layer, is arranged between the at least one second zone and the first layer.
A method of forming a deep trench capacitor in a semiconductor-on-insulator substrate is provided. The method may include providing a pad layer positioned above a bulk substrate, etching a deep trench into the pad layer and the bulk substrate extending from a top surface of the pad layer down to a location within the bulk substrate, and doping a portion of the bulk substrate to form a buried plate. The method further including depositing a node dielectric, an inner electrode, and a dielectric cap substantially filling the deep trench, the node dielectric being located between the buried plate and the inner electrode, the dielectric cap being located at a top of the deep trench, removing the pad layer, growing an insulator layer on top of the bulk substrate, and growing a semiconductor-on-insulator layer on top of the insulator layer.
An object is to reduce parasitic capacitance of a signal line included in a liquid crystal display device. A transistor including an oxide semiconductor layer is used as a transistor provided in each pixel. Note that the oxide semiconductor layer is an oxide semiconductor layer which is highly purified by thoroughly removing impurities (hydrogen, water, or the like) which become electron suppliers (donors). Thus, the amount of leakage current (off-state current) can be reduced when the transistor is off. Therefore, a voltage applied to a liquid crystal element can be held without providing a capacitor in each pixel. In addition, a capacitor wiring extending to a pixel portion of the liquid crystal display device can be eliminated. Therefore, parasitic capacitance in a region where the signal line and the capacitor wiring intersect with each other can be eliminated.
A highly reliable semiconductor device the yield of which can be prevented from decreasing due to electrostatic discharge damage is provided. A semiconductor device is provided which includes a gate electrode layer, a first gate insulating layer over the gate electrode layer, a second gate insulating layer being over the first gate insulating layer and having a smaller thickness than the first gate insulating layer, an oxide semiconductor layer over the second gate insulating layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The first gate insulating layer contains nitrogen and has a spin density of 1×1017 spins/cm3 or less corresponding to a signal that appears at a g-factor of 2.003 in electron spin resonance spectroscopy. The second gate insulating layer contains nitrogen and has a lower hydrogen concentration than the first gate insulating layer.
A method of fabricating a semiconductor device including proving a substrate having a germanium containing layer that is present on a dielectric layer, and etching the germanium containing layer of the substrate to provide a first region including a germanium containing fin structure and a second region including a mandrel structure. A first gate structure may be formed on the germanium containing fin structures. A III-V fin structure may then be formed on the sidewalls of the mandrel structure. The mandrel structure may be removed. A second gate structure may be formed on the III-V fin structure.
Uniform masking for wafer dicing using laser and plasma etch is described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits having bumps or pillars includes uniformly spinning on a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with a laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits.
Some embodiments include methods of forming electrically conductive lines. Photoresist features are formed over a substrate, with at least one of the photoresist features having a narrowed region. The photoresist features are trimmed, which punches through the narrowed region to form a gap. Spacers are formed along sidewalls of the photoresist features. Two of the spacers merge within the gap. The photoresist features are removed to leave a pattern comprising the spacers. The pattern is extended into the substrate to form a plurality of recesses within the substrate. Electrically conductive material is formed within the recesses to create the electrically conductive lines. Some embodiments include semiconductor constructions having a plurality of lines over a semiconductor substrate. Two of the lines are adjacent to one another and are substantially parallel to one another except in a region wherein said two of the lines merge into one another.
Embodiments of mechanisms for forming a semiconductor device structure with floating spacers are provided. The semiconductor device structure includes a silicon-on-insulator (SOI) substrate and a gate stack formed on the SOI substrate. The semiconductor device structure also includes gate spacers formed on sidewalls of the gate stack. The gate spacers include a floating spacer. The semiconductor device structure further includes a contact etch stop layer formed on the gate stack and the gate spacers. The contact etch stop layer is formed between the floating spacer and the SOI substrate.
A method of manufacturing an insulated gate bipolar transistor (IGBT) device comprising 1) preparing a semiconductor substrate with an epitaxial layer of a first conductivity type supported on the semiconductor substrate of a second conductivity type; 2) applying a gate trench mask to open a first trench and second trench followed by forming a gate insulation layer to pad the trench and filling the trench with a polysilicon layer to form the first trench gate and the second trench gate; 3) implanting dopants of the first conductivity type to form an upper heavily doped region in the epitaxial layer; and 4) forming a planar gate on top of the first trench gate and apply implanting masks to implant body dopants and source dopants to form a body region and a source region near a top surface of the semiconductor substrate.
By configuring an ESD protection element of an NPN transistor (101), it is possible to reduce the area of the ESD protection element and reduce the voltage in a region in which the current increases sharply, and thus possible to increase ESD tolerance. Also, it is possible to provide a highly reliable semiconductor device wherein it is possible to flatten and smooth the surface of an upper layer pad electrode (16) by dividing a pad electrode (8) into a two-layer structure sandwiching an interlayer insulating film (15), and possible to increase the junction strength of a bonding wire, and suppress damage to underlying silicon layers when bonding.
A substrate conveying container opening/closing device includes an elevator carriage provided in a substrate transfer area and configured to be moved up and down by an elevator mechanism, a cover member for opening and closing an opening of a wall, a seal member for sealing a gap between the cover member and the periphery of the opening, a lid detaching/attaching mechanism provided in the cover member and configured to detach and attach the lid, a guide unit provided in the elevator carriage and configured to guide the cover member upward so that the cover member can advance from a retracting position toward the wall, a guideway provided in the wall to extend in a direction perpendicular to a seal surface of the opening, and a rotating body provided in the cover member and configured to roll downward along the guideway as the elevator carriage is moved downward.
A semiconductor device according to the present embodiment includes a semiconductor layer. A gate dielectric film is provided on a surface of the semiconductor layer. A gate electrode is provided on the semiconductor layer via the gate dielectric film. A drain layer of a first conductivity type is provided in a part of the semiconductor layer on a side of a first end of the gate electrode. A source layer of a second conductivity type is provided in a part of the semiconductor layer on a side of a second end of the gate electrode and below the gate electrode. The source layer has a substantially uniform impurity concentration at the part of the semiconductor layer below the gate electrode. Voltages of a same polarity are applied to the gate electrode and the drain layer.
A manufacturing method of a junction field effect transistor includes the steps of: (a) forming an n+-type source layer on a surface of an n−-type drift layer formed on an n+-type SiC substrate; (b) forming a plurality of shallow trenches disposed at predetermined intervals by etching the surface of the n−-type drift layer with a silicon oxide film formed on the n−-type drift layer used as a mask; (c) forming an n-type counter dope layer by doping the n−-type drift layer below each of the shallow trenches with nitrogen by using a vertical ion implantation method; (d) forming a sidewall spacer on each sidewall of the silicon oxide film and the shallow trenches; and (e) forming a p-type gate layer by doping the n−-type drift layer below each of shallow trenches with aluminum by using the vertical ion implantation method.
Field effect transistors fabricated using atomic layer doping processes are disclosed. In accordance with an embodiment of an atomic layer doping method, a semiconducting surface and a dopant gas mixture are prepared. Further, a dopant layer is grown on the semiconducting surface by applying the dopant gas mixture to the semiconducting surface under a pressure that is less than 500 Torr and a temperature that is between 300° C. and 750° C. The dopant layer includes at least 4×1020 active dopant atoms per cm3 that react with atoms on the semiconducting surface such that the reacted atoms increase the conductivity of the semiconducting surface.
A hard mask etch stop is formed on the top surface of tall fins to preserve the fin height and protect the top surface of the fin from damage during etching steps of the transistor fabrication process. In an embodiment, the hard mask etch stop is formed using a dual hard mask system, wherein a hard mask etch stop layer is formed over the surface of a substrate, and a second hard mask layer is used to pattern a fin with a hard mask etch stop layer on the top surface of the fin. The second hard mask layer is removed, while the hard mask etch stop layer remains to protect the top surface of the fin during subsequent fabrication steps.
A semiconductor structure includes a semiconductor substrate having a first portion and a second portion. A first Fin field-effect transistor (FinFET) is formed over the first portion of the semiconductor substrate, wherein the first FinFET includes a first fin having a first fin height. A second FinFET is formed over the second portion of the semiconductor substrate, wherein the second FinFET includes a second fin having a second fin height different from the first fin height. A top surface of the first fin is substantially level with a top surface of the second fin. A punch-through stopper is underlying and adjoining the first FinFET, wherein the punch-through stopper isolates the first fin from the first portion of the semiconductor substrate.
Embodiments of the present disclosure relate to display devices and methods for manufacturing display devices. Specifically, embodiments of the present disclosure employ an enhanced etching process to create uniformity in the gate insulator of thin-film-transistor (TFTs) by using an active layer to protect the gate insulator from inadvertent etching while patterning an etch stop layer.
There are provided a semiconductor device having a drain region making a BLDD structure withstandable against a high voltage, sufficiently suppressing a hot-carrier deterioration, and having a high ESD withstandable characteristic, and a method for manufacturing the same. A semiconductor device is formed including a MOS transistor having a source region and a drain region both formed in a semiconductor substrate, and a channel region formed therebetween. At this time, the concentration of holes emitted form P-type impurities injected into the channel region and contributing an electrical conduction is lower at a side close to the drain region than at a side close to the source region. The drain region includes a drift region into which N-type impurities are injected. The drift region extends toward the channel region from the drain region except a nearby area to the surface of the semiconductor substrate.
The semiconductor device of this embodiment includes: a first region of a first conductivity type SiC; a second region of a first conductivity type SiC, impurity concentration of first conductivity type of the second region being lower than impurity concentration of first conductivity type of the first region; a third region of a second conductivity type SiC provided between the first region and the second region; a Si layer provided on surfaces of the first, second, and third regions, a thickness of the Si layer on the third region being thicker than a thickness of the Si layer on the second region; a gate insulating film provided on the Si layer; and a date electrode provided on the gate insulating film.
A method for producing a metal structure in a semiconductor substrate includes: producing an opening in the rear side of the semiconductor substrate in the area of the metal structure to be produced, which extends to the front side layer structure; filling the opening at least partially with a metal so that a metal structure is created which extends from the rear side of the semiconductor substrate to the front side layer structure; masking the rear side of the semiconductor substrate for a trench process for exposing the metal structure in such a way that the trench mask includes a lattice structure in an area adjacent to the metal structure; producing an isolation trench adjacent to the metal structure, the metal structure acting as a lateral etch stop and the lattice structure being laterally undercut in the trench mask; and applying a sealing layer to the mask.
In a semiconductor device manufacturing method, a semiconductor chip is mounted on a support board so as to expose a side of the semiconductor chip on which a plurality of terminal electrodes are provided. An insulating layer is formed so as to cover the side of the semiconductor chip on which the terminal electrodes are provided. Through electrodes connecting to the terminal electrodes and piercing the insulating layer are formed. Metal wirings connecting to the through electrodes are formed on the insulating layer. External terminal electrodes connecting the metal wiring are formed. Second spacing, spacing between the adjacent external terminal electrodes, is larger than first spacing, spacing between the adjacent terminal electrodes.
According to an exemplary embodiment, a stacked half-bridge package includes a control transistor having a control drain for connection to a high voltage input, a control source coupled to a common conductive clip, and a control gate for being driven by a driver IC. The stacked half-bridge package also includes a sync transistor having a sync drain for connection to the common conductive clip, a sync source coupled to a low voltage input, and a sync gate for being driven by the driver IC. The control and sync transistors are stacked on opposite sides of the common conductive clip with the common conductive clip electrically and mechanically coupling the control source with the sync drain, where the common conductive clip has a conductive leg for providing electrical and mechanical connection to an output terminal leadframe.
Various embodiments disclosed include semiconductor structures and methods of forming such structures. In one embodiment, a method includes: providing a semiconductor structure including: a substrate; at least one gate structure overlying the substrate; and an interlayer dielectric overlying the substrate and the at least one gate structure; removing the ILD overlying the substrate to expose the substrate; forming a silicide layer over the substrate; forming a conductor over the silicide layer and the at least one gate structure; forming an opening in the conductor to expose a portion of a gate region of the at least one gate structure; and forming a dielectric in the opening in the conductor.
Semiconductor devices, methods of manufacture thereof, and methods of manufacturing capacitors are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes forming a capacitor over a workpiece. The capacitor includes a bottom electrode, a capacitor dielectric disposed over the bottom electrode, and a top electrode disposed over the capacitor dielectric. A portion of the bottom electrode and a portion of the top electrode are removed proximate edges of the capacitor dielectric.
An organic EL display panel has a transistor array substrate, an inter-layer insulation film, pixel electrodes, an organic EL layer, and a common electrode. The transistor array substrate has drive units, including TFT elements. The inter-layer insulation film covers the transistor array substrate, and has contact holes corresponding to the drive units. The pixel electrodes on the inter-layer insulation film correspond to the drive units, and are electrically connected thereto via the contact holes. The organic EL layer covers regions where the pixel electrodes are and are not disposed. The common electrode covers the entire organic EL layer. Organic EL layer regions corresponding to the contact holes of the inter-layer insulation film and between neighboring pixel electrodes have greater electrical resistance than other regions.
An organic electroluminescent display device is disclosed which includes: a lower substrate including a first substrate defined into red, green and blue sub-pixel regions, first and second switching elements formed in the red and green sub-pixel regions, first and second anodes each connected to the first and second switching elements, and a first organic light emission layer entirely formed on the first substrate provided with the first and second anodes; and an upper substrate including a second substrate, red and green color filter layers formed on the second substrate corresponding to the red and green sub-pixel regions, a third switching element formed on the second substrate corresponding to the blue sub-pixel region, a third anode connected to the third switching element, and a second organic light emission layer entirely formed on the second substrate provided with the red and green color filter layers and the third anode.
A power semiconductor package that includes a semiconductor die having at least two power electrodes and a conductive clip electrically and mechanically coupled to each power electrode.
A method of forming a multi-floor step pattern structure includes forming a stacked structure having alternating insulating interlayers and sacrificial layers on a substrate. A first photoresist pattern is formed on the stacked structure. A first preliminary step pattern structure is formed by etching portions of the stacked structure using the first photoresist pattern as an etching mask. A passivation layer pattern is formed on upper surfaces of the first photoresist pattern and the first preliminary step pattern structure. A second photoresist pattern is formed by removing a side wall portion of the first photoresist pattern exposed by the passivation layer pattern. A second preliminary step pattern structure is formed by etching exposed insulating interlayers and underlying sacrificial layers using the second photoresist pattern as an etching mask. The above steps may be repeated on the second preliminary step pattern structure to form the multi-floor step pattern structure.
This invention provides a semiconductor having a functionalized surface that is resistant to oxidation and that includes a plurality of atoms of a Group III element bonded to organic groups. The functionalized surface has less than or equal to about 1 atom of the Group III element bonded to an oxygen atom per every 1,000 atoms of the Group III element bonded to the organic groups, as determined using X-ray photoelectron spectroscopy. This invention also provides a method of functionalizing the surface and includes the step of halogenating at least one of the plurality of atoms of the Group III element to form halogenated Group III element atoms. The method also includes the step of reacting at least one of the halogenated Group III element atoms with a Grignard reagent to form a bond between the at least one Group III element atom and the organic groups.
A method of making a semiconductor device includes forming a fin structure over a substrate. The method further includes performing a plasma doping process on the fin structure. Performing the plasma doping process includes implanting plasma ions into the fin structures at a plurality of implant angles, and the plurality of implant angles has an angular distribution and at least one highest angle frequency value.
A low stress sacrificial cap layer 120 having a silicon oxide liner film 130, a low stress silicon film 140, and a silicon nitride film Alternatively, a low stress sacrificial cap layer 410 having a silicon oxide liner film 130 and a graded silicon nitride film 420. Also, methods 300, 500 for fabricating a transistor 20, 400 having a low stress sacrificial cap layer 120, 410.
Embodiments of radiographic imaging systems; radiography detectors and methods for using the same; and/or fabrication methods therefore can include radiographic imaging array that can include a plurality of pixels that each include a photoelectric conversion element coupled to a thin-film switching element. In certain exemplary embodiments, thin-film switching element is a metal oxide (e.g., a-IGZO) TFT manufactured using a reduce photolithography mask counts. In certain exemplary embodiments, the thin-film switching element is a metal oxide (e.g., a-IGZO) TFT that includes reduced lower alignment tolerances between TFT electrodes. In certain exemplary embodiments, the thin-film switching element is a metal oxide (e.g., a-IGZO) TFT including a reduced thickness active layer.
A semiconductor device having a solid-state image sensor which can prevent inter-pixel crosstalk more reliably. The device includes: a semiconductor substrate having a main surface; a first conductivity type impurity layer located over the main surface of the substrate; a photoelectric transducer including a first conductivity type impurity region and a second conductivity type impurity region which are joined to each other over the first conductivity type impurity layer; and transistors which configure a unit pixel including the photoelectric transducer and are electrically coupled to the photoelectric transducer. At least part of the area around the photoelectric transducer in a plan view contains an air gap and also has an isolation insulating layer for electrically insulating the photoelectric transducer and a photoelectric transducer adjacent to it from each other. The isolation insulating layer abuts on the top surface of the first conductivity type impurity layer.
A packaged semiconductor device includes a semiconductor substrate, a metal pad, a metal base, a polymer insulating layer, a copper-containing structure and a conductive bump. The metal pad and the metal base are disposed on the semiconductor substrate. The polymer insulating layer overlies the metal base and the semiconductor substrate. The copper-containing structure is disposed over the polymer insulating layer, and includes a support structure and a post-passivation interconnect (PPI) line. The support structure is aligned with the metal base. The PPI line is located partially within the support structure, and extends out through an opening of the support structure, in which a top of the support structure is elevated higher than a top of the PPI line. The conductive bump is held by the support structure.
The present invention discloses a thin-film transistor (TFT) array substrate and a manufacturing method thereof. Depositing a transparent conductive layer and a first metal layer on a substrate, which is patterned by a multi-tone mask (MTM) to form a gate, a common electrode and a reflecting layer; depositing a gate insulation layer, which is patterned by a first mask to remain the gate insulation layer on the gate; depositing a semiconductor layer, which is patterned by a second mask to remain the semiconductor layer on the gate; and depositing a second metal layer, which is patterned by a third mask to form a source and a drain.
A display device of which frame can be narrowed and of which display characteristics are excellent is provided. In a display device including a switch portion or a buffer portion, a logic circuit portion, and a pixel portion, the pixel portion includes a first inverted staggered TFT and a pixel electrode which is connected to a wiring of the first inverted staggered TFT, the switch portion or the buffer portion includes a second inverted staggered TFT in which a first insulating layer, a semiconductor layer, and a second insulating layer are interposed between a first gate electrode and a second gate electrode, the logic circuit portion includes an inverter circuit including a third inverted staggered thin film transistor and a fourth inverted staggered thin film transistor, and the first to the fourth inverted staggered thin film transistors have the same polarity. The inverter circuit may be an EDMOS circuit.
The degree of integration of a semiconductor device is enhanced and the storage capacity per unit area is increased. The semiconductor device includes a first transistor provided in a semiconductor substrate and a second transistor provided over the first transistor. In addition, an upper portion of a semiconductor layer of the second transistor is in contact with a wiring, and a lower portion thereof is in contact with a gate electrode of the first transistor. With such a structure, the wiring and the gate electrode of the first transistor can serve as a source electrode and a drain electrode of the second transistor, respectively. Accordingly, the area occupied by the semiconductor device can be reduced.
A method of aligning a semiconductor chip includes forming a semiconductor chip with a light-activated circuit including at least one photosite, positioning the semiconductor chip relative to a device, and illuminating the positioned semiconductor chip. The method further includes generating an RF signal with an RF circuit based upon illumination of the at least one photosite, and determining the position of the photosite with respect to the device based upon the generated RF signal.
An integrated circuit device includes a Cu pillar and a solder layer overlying the Cu pillar. A Co-containing metallization layer is formed to cover the Cu pillar and the solder layer, and then a thermally reflow process is performed to form a solder bump and drive the Co element into the solder bump. Next, an oxidation process is performed to form a cobalt oxide layer on the sidewall surface of the Cu pillar.
The three dimensional (3D) circuit includes a first tier including a semiconductor substrate, a second tier disposed adjacent to the first tier, a three dimensional inductor including an inductive element portion, the inductive element portion including a conductive via extending from the first tier to a dielectric layer of the second tier. The 3D circuit includes a ground shield surrounding at least a portion of the conductive via. In some embodiments, the ground shield includes a hollow cylindrical cage. In some embodiments, the 3D circuit is a low noise amplifier.
A device and method of fabricating the same are disclosed. In an example, a device includes a first fin Field Effect Transistors (finFET) formed on a substrate. The first finFET including a fin formed on the substrate. The device further includes a second finFET formed on the substrate. The first finFET and the second finFET share the fin and wherein the first finFET is without any low density doped (LDD) extension region in the substrate and wherein the second FinFET is associated with a first LDD extension region formed in the substrate such that a drive strength of the second finFET is greater relative to a drive strength of the first finFET.
A semiconductor uses an isolation trench, and one or more additional trenches to those required for isolation are provided. These additional trenches can be connected between a transistor gate and the drain to provide additional gate-drain capacitance, or else they can be used to form series impedance coupled to the transistor gate. These measures can be used separately or in combination to reduce the switching speed and thereby reduce current spikes.
A semiconductor device includes a substrate, a buried insulating film formed on the substrate, an SOI layer formed on the buried insulating film, an insulating film formed to extend from a top surface of the SOI layer to the buried insulating film and to divide the SOI layer into a first SOI layer and a second SOI layer isolated from the first SOI layer, an element formed in the first SOI layer, and an electrode having at one end thereof a pad located directly above the second SOI layer, the other end of the electrode being connected to the first SOI layer. A cavity region is formed between the buried insulating film and the substrate directly below the first SOI layer. The portion of the buried insulating film directly below the second SOI layer is at least partially in direct contact with the substrate.
A barrier for preventing a bridge between adjacent storage node contacts is formed below a bit line located between the bit line contacts, so that a contact region between each storage node contact and an active region is increased in size. The semiconductor device includes a device isolation film defining an active region, a bit line contact coupling the active region to a bit line, and a barrier formed below the bit line located between the bit line contacts.
A semiconductor device includes a semiconductor layer; a first type of a first semiconductor element that is arranged in a first element region of the semiconductor layer, has first and second main electrodes, and switches current; and a second type of a second semiconductor element that is arranged in a second element region of the semiconductor layer, has third and fourth main electrodes, and freewheels the current. The first and second element regions are adjacent in a direction orthogonal to a direction in which current flows, and are formed in a loop shape over the entire element region when the semiconductor layer is viewed from above. The first main electrode is electrically connected to the third main electrode, and the second main electrode is electrically connected to the fourth main electrode. When the semiconductor layer is viewed from above, a ratio of a length of the first main electrode to a length of the second main electrode is larger than a ratio of a length of the third main electrode to a length of the fourth main electrode.
A circuit module comprises a die attach pad with a surface and a plurality of leads surrounding the surface. A nonconductive adhesive is on the surface. A plurality of electronic circuit dies are on the surface of the die attach pad. Each die has a top surface and a bottom surface with the bottom surface on the adhesive. The top surface has a plurality of bonding pads. A first electronic circuit die has at least one routing path of a conductive material connecting a first bonding pad to a second bonding pad. A first bonding wire connects a bonding pad of a second electronic circuit die to the first bonding pad of the first electronic die. A second bonding wire connects the second bonding pad of the first electronic circuit die to a lead. Where one of the dies contains vertical circuit element, where a doped layer forms a terminal along the bottom surface of the layer, a trench filled with doped polysilicon extends from the top surface to the terminal to connect to the terminal. The doped polysilicon filled trench also serves to isolate and separate different circuit elements.
The embodiments described herein generally relate to methods for forming a multi-layer amorphous silicon structure that may be used in thin film transistor devices. In one embodiment, a method includes positioning a substrate comprising a buffer layer in a process chamber, the process chamber comprising a processing region, forming a plurality of amorphous silicon layers and annealing the amorphous silicon layers to form a polycrystalline silicon layer. Forming the plurality of layers includes delivering a silicon-containing precursor and a first activation gas to the processing region to deposit a first amorphous silicon layer over the buffer layer, the silicon-containing precursor and the first activation gas being activated by a plasma and maintaining a continuous flow of the silicon-containing precursor while delivering a second activation gas, without the first activation gas, to the processing region to deposit a second silicon layer on the first silicon layer.
A method of manufacturing a semiconductor element includes forming a first bonding layer containing a metal, which forms a eutectic crystal with Au, on a first substrate to provide a first laminated body. The method also includes forming an element structure layer having a semiconductor layer on a second substrate. The method also includes forming a second bonding layer on the element structure layer to provide a second laminated body. The second bonding layer has a metal underlayer containing a metal, which forms a eutectic crystal with Au. The second bonding layer also has a surface layer that contains Au. The method also includes performing heating pressure-bonding on the first and second laminated bodies with the first and second bonding layers facing each other. The heating temperature of the second substrate in the heating pressure-bonding is higher than the heating temperature of the first substrate.
Ions having a restricted range of mass to charge ratios are transmitted to the acceleration region of a Time of Flight mass analyzer. A control system applies a first extraction pulse to an acceleration electrode in order to accelerate a first group of ions into the time of flight region at a first time T1, wherein ions having the lowest mass to charge ratio in the first group of ions have a time of flight ΔT1min through the time of flight region and ions having the highest mass to charge ratio in the first group of ions have a time of flight ΔT1max through the time of flight region. The control system applies a second extraction pulse to the acceleration electrode at a subsequent second time T2, wherein ΔT1max−ΔT1min≦T2−T1<ΔT1max.
An accumulating ion source for a mass spectrometer that includes a sample injector (328) introducing sample vapors into an ionization space (115) and an electron emitter (102) emitting a continuous electron beam (104) into the ionization space (115) to generate analyte ions. The accumulating ion source further includes first and second electrodes (108a, 108b) arranged spaced apart in the ionization space (115) for accumulating analyte ions substantially therebetween. The first and second electrodes (108a, 108b) receive periodic extraction energy potentials to accelerate packets of analyte ions from the ionization space (115) along a first axis. An orthogonal accelerator (140) receives the packets of analyte ions along the first axis and periodically accelerates the packets of analyte ions along a second axis substantially orthogonal to the first axis. A time delay between the extraction acceleration and the acceleration of each respective packet of analyte ions provides a proportional mass range of the respective packet of analyte ions.
A mass spectrometry method for analyzing isobarically-labeled analyte compounds comprising (a) ionizing compounds including the isobarically-labeled analyte compounds to generate a plurality of precursor ion species comprising different respective m/z ratios, (b) isolating a precursor ion species, (c) fragmenting the precursor ion species to generate a plurality of first-generation fragment ion species comprising different respective m/z ratios, and (d) selecting and co-isolating two or more of the first-generation product-ion species, the method characterized by: (e) fragmenting all of the selected and isolated first-generation product ion species so as to generate a plurality of second-generation fragment ion species including released label ions; (f) generating a mass spectrum of the second-generation fragment ion species; and (g) generating quantitative information relating to at least one analyte compound based on peaks of the mass spectrum attributable to the released label ions.
A dielectric window for a plasma treatment device for a plasma treatment device that uses microwaves as a plasma source. The dielectric window is circular-plate-shaped and allows microwaves to propagate. The dielectric window has a recess that has an opening on the lower-surface side and that indents in the plate thickness direction of the dielectric window, and is provided to the lower surface at which plasma is generated when the dielectric window is provided to the plasma treatment device. The recess has a bottom surface extending in the direction perpendicular to the plate thickness direction, and a side surface extending in the plate thickness direction from the circumferential edge of the bottom surface toward the opening of the recess. In addition, an inclined surface extends at an incline relative to the plate thickness direction from the opening-side circumferential edge of the side surface toward the opening of the recess.
Methods of using temperature control devices in electron microscopes. The temperature of the device structure may be controlled to extract information about reactions and processes that was previously unobtainable.
This invention provides a method for improving performance of a reflective type energy filter for a charged particle beam, which employs a beam-adjusting lens on an entrance side of a potential barrier of the energy filter to make the charged particle beam become a substantially parallel beam to be incident onto the potential barrier. The method makes the energy filter have both a fine energy-discrimination power over a large emission angle spread and a high uniformity of energy-discrimination powers over a large FOV. A LVSEM using this method in the energy filter can obviously improve image contrast. The invention also provides multiple energy-discrimination detection devices formed by using the advantages of the method.
A key press detecting circuit and method detect the status of multiple keys through a single pin. In an embodiment, a constant current is provided to apply to a key module through a single pin, to generate a voltage at the single pin that is related to the equivalent resistance of the key module observed from the single pin, and the voltage of the single pin is compared with a set of reference values to identify the status of the plurality of keys. In another embodiment, a variable current is provided to apply to a key module through a single pin in such a way that the variable current is adjusted to maintain a constant voltage at the single pin, and the variable current is compared with a set of reference values to identify the status of the plurality of keys.
A switching apparatus includes a base, a housing, a main switch for mechanically disconnecting a power supply circuit and an interlock switch for electrically disconnecting the power supply circuit. The switching apparatus also includes a lever which is rotatably supported by one of the base and the housing and also is engaged with an engaging section formed in the other of the base and the housing. The lever causes a wall of the housing to be slid in a depth direction of an annular groove of the base in accordance with a rotation of the lever. The interlock switch is disconnected ahead of the main switch by separating a movable terminal of the interlock switch away from a fixed terminal of the interlock switch when the lever is rotated to cause the housing slid in a direction away from the base.
A manufacturing method of a light-emitting button key includes a pressing step of pressing a metal plate and forming a button body opened in one direction; an adhesive coating step of coating an adhesive in the button body; an injection-molding step of injecting a synthetic resin formed of a transparent or semitransparent material into the button body in which an adhesive layer is formed by the adhesive; and a groove machining step of penetrating the button body and adhesive layer from an outside of the button body and thus forming a light transmission groove corresponding to a character, number or symbol. The light transmission groove is formed in the groove machining step is not passed through the penetration part, and the light emitted from the rear side of the button body is radiated to an outside through the penetration part and light transmission groove.
The present invention relates to an electromagnetically-countered system including at least one wave source irradiating harmful electromagnetic waves and at least one counter unit emitting counter electromagnetic waves which are capable of countering the harmful waves by such counter waves. More particularly, the present invention relates to generic counter units of various electromagnetically-countered transformer systems and to various mechanisms for countering the harmful waves by the counter units by, e.g., matching configurations of such counter units with those of the wave sources, matching shapes of the counter waves with shapes of the harmful waves, and the like. The present invention also relates to various methods of countering the harmful waves with the counter waves by such source matching or wave matching and various methods of providing such counter units as well as emitting the counter waves. The present invention also relates to various processes for providing such systems and their counter units. The present invention further relates to various electric and/or magnetic shields which may be used alone and/or in combination with such counter units to minimize irradiation of the harmful waves from the system.
One or more embodiments relate to a semiconductor structure, comprising: a conductive feature; an outer guard ring; and an inner guard ring between the outer guard ring and the conductive feature, the inner guard ring being electrically coupled to the conductive feature.
A high-temperature superconductor (HTS) coil includes a coil winding with a superconducting material and a coil former for carrying the coil winding. When the high-temperature supercon-ductor (HTS) coil cools down from a room temperature to an operating temperature, the coil winding or the coil former counteract a thermal shrinkage of the coil winding in order to avoid or reduce a longitudinal compression of the superconducting material of the coil winding.
A method of manufacturing wire comprising aluminum oxide particles formed in situ in a fully dense matrix of titanium aluminide intermetallic material by means of the combustion synthesis of aluminum and titanium oxide followed by thermo-mechanical forming. The pre-combustion aluminum may be elemental, or an aluminum alloy containing one or more of the elements vanadium, niobium, molybdenum, or boron. The preferred embodiment of the present invention is an electric power transmission cable comprising a plurality of wires manufactured according to the present invention.
A device for, and method of manufacture of, a focused anti-scatter grid for improving the image contrast of x-ray images produced in medical, veterinary or industrial applications. The grid comprising a series of modular units so juxtaposed with each other as to form a series of focused channels for the passage of the focused imaging x-rays. The modules comprise a series of focusing ribbons of a heavy metal or a series of mating solid arcuate forms, formed of a polymer and having on at least one side surface a layer of heavy metal.
An x-ray analysis apparatus for illuminating a sample spot with an x-ray beam. An x-ray tube is provided having a source spot from which a diverging x-ray beam is produced having a characteristic first energy, and bremsstrahlung energy; a first x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam; and a second x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam to a second energy. The first x-ray optic may monochromate characteristic energy from the source spot, and the second x-ray optic may monochromate bremsstrahlung energy from the source spot. The x-ray optics may be curved diffracting optics, for receiving the diverging x-ray beam from the x-ray tube and focusing the beam at the sample spot. Detection is also provided to detect and measure various toxins in, e.g., manufactured products including toys and electronics.
A method of transferring a radioactive payload and a method of performing work within a cavity of a shielding container. In one embodiment, the invention is a method comprising a) positioning a shield-gate apparatus atop a first shielding container, the shield-gate apparatus comprising a body, a passageway extending through the body, and one or more movable shielding gates that are open; and b) lifting a removable shielding lid of the first shielding container through the passageway, wherein during closing of the one or more shielding gates the removable shielding lid is maintained in a position in which either: (1) a bottom surface of the removable shielding lid is disposed within the passageway at a height above the one or more shielding gates; or (2) the bottom surface of the removable shielding lid is substantially flush with the top surface of the body of the shield-gate apparatus.
A storage system for a pharmacy that has a frame containing a rack-like structure with a plurality of storage carriers detachably suspended therefrom. The carriers are sized to receive filled prescription orders and the like and include individual identifiers that facilitate locating the carriers at a specific location on the rack-like structure. Preferably, the storage system includes a tracking system that detects, monitors, and displays to a worker the location of the storage carrier containing a particular customer's prescription order, thereby providing easy retrieval of the customer's prescription order.
Methods, apparatus and systems pertain to performing READ, WRITE functions in a memory which is coupled to a repair controller. One such repair controller could receive a row address and a column address associated with the memory and store a first plurality of tag fields indicating a type of row/column repair to be performed for at least a portion of a row/column of memory cells, and a second plurality of tag fields to indicate a location of memory cells used to perform the row/column repair.
To decrease the circuit scale necessary for the calibration of the output circuit and to decrease the time required for the calibration operation. The invention includes a first output buffer and a second output buffer that are connected to a data pin, and a calibration circuit that is connected to a calibration pin. The first output buffer and the second output buffer include plural unit buffers. The unit buffers have mutually the same circuit structures. With this arrangement, the impedances of the first output buffer and the second output buffer can be set in common, based on the calibration operation using the calibration circuit. Consequently, both the circuit scale necessary for the calibration operation and the time required for the calibration operation can be decreased.
A sense amplifier for a static random access memory (SRAM) is described. In one embodiment, a first pass gate transistor is driven by a bit line true associated with an SRAM cell. A second pass gate transistor is driven by a bit line complement associated with the SRAM cell. A first pull down transistor is coupled to the first pass gate transistor and a second pull down transistor is coupled to the second pass gate transistor. A data line true is coupled to a node coupling the first pull down transistor with the first pass gate transistor. A data line complement is coupled to a node coupling the second pull down transistor with the second pass gate transistor.
Apparatuses and methods for selective row refreshes are disclosed herein. An example apparatus may include a refresh control circuit. The refresh control circuit may be configured to receive a target address associated with a target plurality of memory cells from an address bus. The refresh control circuit may further be configured to provide a proximate address to the address bus responsive, at least in part, to determining that a number of refresh operations have occurred. In some examples, a plurality of memory cells associated with the proximate address may be a plurality of memory cells adjacent the target plurality of memory cells.
An erase operation for a 3D stacked memory device assigned storage elements to groups according to an expected erase speed. The storage elements are then erased according to their group to provide a more uniform erase depth and a tighter erase distribution. In one approach, the control gate voltages are set differently for the different groups to slow down the storage elements which are expected to have a faster programming speed. An erase or inhibit status can be set for all groups together. In another approach, the control gate voltages are common for the different groups but an erase or inhibit status is set for each group separately.
A non-volatile storage system is disclosed that includes pairs of NAND strings (or other groupings of memory cells) in the same block being connected to and sharing a common bit line. To operate the system, two selection lines are used so that the NAND strings (or other groupings of memory cells) sharing a bit line can be selected at the block level. Both selection lines are connected to a selection gate for each of the NAND strings (or other groupings of memory cells) sharing the bit line. One set of embodiments avoid unwanted boosting during read operations by keeping the channels of the memory cells connected to word lines on the drain side of the selected word line biased at a fixed potential.
An analog read circuit measures the resistance of each of a plurality of bits in an array of resistive memory elements. Data stored within a latch determines whether to selectively enable the analog read circuit. In an alternate embodiment, a sense amplifier is coupled to the latch and the array, and the data stored in the latch determines whether to selectively enable the sense amplifier.
Methods for compensating for variations in bit line resistance during sensing of memory cells are described. The variations in bit line resistance may occur die-to-die or plane-to-plane on the same die. In some embodiments, for each die or memory plane on a die, a plurality of bit line read voltages associated with a plurality of zones may be determined based on sensing criteria. The sensing criteria may comprise a number of fail bits. Each zone of the plurality of zones may be associated with a memory array region within a die or memory plane. Prior to performing a read or verify operation on a group of memory cells, a bit line read voltage used during sensing of the group of memory cells may be determined based on the plurality of bit line read voltages and a zone associated with the group of memory cells.
A structure of a memory device and a method for making the memory device structure are described. The memory device includes an array of memory cells in an array level die. The array comprises a plurality of sub-arrays. Each of the sub-arrays comprises respective data lines. The memory device also includes page buffers for corresponding sub-arrays in a page-buffer level die. The memory device also includes inter-die connections that are configured to electrically couple the page buffers in the page-buffer level die to data lines of corresponding sub-arrays in the array level die.
A register circuit is provided which can hold data even after being powered off and which does not require a save operation and a return operation. In a register circuit including a plurality of register component circuits, a first transistor with small off-state current, and a second transistor with small off-state current, a data holding portion is connected to one of a source and a drain of the first transistor and one of a source and a drain of the second transistor. Since the first transistor and the second transistor have a small off-state current, electric charge does not leak from the data holding portion, and data is held by the data holding portion even after the register circuit is powered off. Thus, a save operation and a return operation are not required.
A system including a resistive random access memory cell connected to a word line and a bit line and a pre-charge circuit configured to pre-charge the bit line to a first voltage with the word line being unselected. A driver circuit selects the word line at a first time subsequent to the bit line being charged to the first voltage. A comparator compares a second voltage on the bit line to a third voltage supplied to the comparator and generates an output based on the comparison. A latch latches the output of the comparator and generates a latched output. A pulse generator generates a pulse after a delay subsequent to the first time to clock the latch to latch the output of the comparator and generate the latched output. The latched output indicates a state of the resistive random access memory cell.
Methods for reducing power consumption of a non-volatile storage system and reducing first read latency are described. The non-volatile storage system may include a cross-point memory array. In some embodiments, during a standby mode, the memory array may be biased such that both word lines and bit lines are set to ground. During transition of the memory array from the standby mode to a read mode, a selected word line comb may be set to a read voltage while the unselected word lines and the bit lines remain at ground. During the read mode, memory cells connected to the selected bit lines and the selected word line comb may be sensed while the selected bit lines are biased to a selected bit line voltage equal to or close to ground and the unselected bit lines are left floating after initially being set to ground.
A data storage device is disclosed comprising a non-volatile memory. A supply voltage for powering the non-volatile memory is sampled to generate supply voltage samples. A power loss threshold is adjusted based on the supply voltage samples, and a power loss event is detected based on the power loss threshold and the supply voltage, wherein an emergency operation is executed when the power loss event is detected.
Internal voltage generation circuits are provided. The internal voltage generation circuit includes a code signal generator and an internal voltage generator. The code signal generator generates input code signals having a logic level combination corresponding to a difference between a frequency of an external clock signal and a frequency of an internal clock signal. The internal voltage generator is selectively activated according to the logic level combination of the input code signals to drive an internal voltage signal.
A single-ended low-swing power-savings mechanism is provided. The mechanism comprises a precharge device that turns off in an evaluation phase and a first biasing device is always on. Within the mechanism, a strength of a keeper device is changed to a first level in response to an input of the second biasing device being at a first voltage level. Within the mechanism the strength of the keeper device is changed to a second level in response to the input of the second biasing device being at a second voltage level. Responsive to receiving a (precharged voltage level read data line signal, a precharged voltage level of the first node falls faster when the keeper device is weakened to a first level. The keeper device turns on in response to receiving a LOW signal and pulls up the voltage at the first node so that a HIGH signal is output.
A spindle motor includes a shaft arranged to extend in an axial direction, and a base portion arranged to define a portion of a housing, and including a through hole in which the shaft is inserted. A fixing region is defined between an inner circumferential portion of the base portion and a lower portion of the shaft. The fixing region includes a press-fitting region and an adhesion region defined on a lower side of the press-fitting region and in which a seal gap is defined between the inner circumferential portion of the base portion and the lower portion of the shaft. The seal gap is arranged to gradually decrease in radial width with increasing height. The seal gap is arranged to include an adhesive arranged therein over an entire circumference thereof.
Implementations disclosed herein provide a method comprising determining used shingled data tracks adjacent to a target track using a track usage monitoring scheme, and reading the used shingled data tracks to perform a write operation to the target track.
In one embodiment, a method includes passing a signal through an adaptive noise whitening filter, wherein one or more noise whitening coefficients used in the noise whitening filter are updated using a noise whitening filter coefficient updater, wherein the noise whitening filter is configured to process the signal according to a transfer polynomial: W(D)=1−(p1D+ . . . +pλ′Dλ′), where p1 . . . pλ′ are noise whitening coefficients, where a tape channel is characterized by a transfer polynomial F(D)=1+f1D+ . . . +fLDL where D is delay corresponding to bit duration, with 2L being a number of states of the tape channel, wherein a soft detector has a total of 2L+λ states, the noise whitening filter comprises 2λ′ states, λ′ is greater than λ, L represents a memory length of the tape channel, and λ represents a memory length of the noise whitening filter.
There are provided a spindle motor including a lower thrust member fixed to a base member; and a shaft fixed to the lower thrust member, wherein the lower thrust member includes a fitting protrusion protruding upwardly in the axial direction and fitted into a fixing groove formed in a lower end of the shaft so as to be depressed upwardly in the axial direction, a thrust bearing surface forming a thrust bearing between the thrust bearing surface and a lower surface of the sleeve, and an extension part protruding from an outer edge of the lower thrust member in a radial direction upwardly in the axial direction to form a liquid-vapor interface between the extension part and an outer surface of the sleeve while enclosing the sleeve, and the thrust bearing surface has inner and outer concave parts depressed in one of inner and outer diameter directions thereof, respectively.
An electronic device is disclosed comprising an acceleration sensor operable to generate an acceleration signal, and a free fall detector operable to detect a free fall event in response to the acceleration signal. A frequency response of the acceleration signal is measured, and the free fall detector is disabled when a magnitude of the frequency response within one of a plurality of frequency bands exceeds a threshold, wherein each frequency band corresponds to one of a plurality of normal operating modes.
The embodiments disclose a dual-layer magnetic recording structure including a top magnetic layer etched to remove patterned portions of the top magnetic layer and a bottom magnetic layer including portions with altered magnetic properties of molecules to reduce net magnetic moments and including portions of unaltered magnetic properties exchange-coupled through the top magnetic layer.
A recording medium for recording and reproducing information by means of a head which performs information readout and writing based on magnetic principles is disclosed. The medium comprises a magnetic layer formed on a substrate and a protective layer formed on the magnetic layer. The protective layer comprises an underlayer formed on the magnetic layer and includes a material selected from the group consisting of silicon, silicon carbide and germanium. A carbon layer formed on the underlayer includes amorphous carbon containing hydrogen. The amount of hydrogen in the carbon layer is 24.7 at % or higher and 46.8 at % or lower, the thickness of the underlayer is 0.3 nm or greater and 1.8 nm or less, and the thickness of the carbon layer is 0.2 nm or greater and 1.7 nm or less. The medium exhibits corrosion resistance, sliding durability and head flying characteristics, and reduces magnetic spacing while securing reliability.
An aspect of the present invention relates to a magnetic recording medium comprising a nonmagnetic layer comprising a nonmagnetic powder and a binder and a magnetic layer comprising a ferromagnetic powder and a binder in this order on a nonmagnetic support, wherein the magnetic layer and/or nonmagnetic layer comprises organic acid A and organic acid B below, with an acid strength pKa(A) of organic acid A and an acid strength pKa(B) of organic acid B satisfying a relation of pKa(A)
An apparatus includes a head transducer configured to interact with a magnetic recording medium and a heater configured to thermally actuate the head transducer. A thermal sensor at or near the head transducer is configured to produce a sensor signal. Circuitry is coupled to the heater and configured to cause an oscillation in heater power. The heater power oscillation causes an oscillation in the sensor signal. A detector is coupled to the thermal sensor and configured to detect head-medium contact using the oscillating sensor signal and heater power.
According to one embodiment, a head gimbal assembly includes a support plate, a wiring member including a thin metallic plate, an insulating layer and a conductive layer, the wiring member including a tongue portion located on a convex portion of the support plate, a proximal end portion fixed onto the support plate, and a bridge portion bridged between the tongue portion and the proximal end portion and including a inflection point with respect to a height direction of warping, a magnetic head attached to the tongue portion, and a piezoelectric element bonded to the bridge portion at a section between the proximal end portion and the inflection point.
Systems and methods for providing media having a moment keeper layer for heat assisted magnetic recording (HAMR). One such method for writing information to a magnetic media having a moment keeper layer using heat assisted magnetic recording includes heating a portion of the media to a preselected temperature, where the media includes a magnetic recording layer adjacent to the keeper layer, where a Curie temperature of the keeper layer is greater than a Curie temperature of the recording layer, and where the preselected temperature is about equal to, or greater than, the Curie temperature of the recording layer, allowing the portion of the media to cool, and writing information to the media during the cooling.
A data storage system according to one embodiment includes a magnetic head, a drive mechanism for passing a magnetic medium over the magnetic head, and a controller electrically coupled to the magnetic head. The data storage system is configured to use at least two different track width formats, where which of the at least two different track width formats used by the system during reading and/or writing of data is selectable. A magnetic tape-based data storage system according to another embodiment includes a magnetic head; a drive mechanism for passing a magnetic recording tape over the magnetic head; and a controller electrically coupled to the magnetic head, wherein the system is configured to use at least two different track width formats, wherein which of the at least two different track width formats used by the system during reading and/or writing of data is selectable.
A signal portion per frame is extracted from an input signal, thus generating a per-frame signal. The per-frame signal in the time domain is converted into a per-frame signal in the frequency domain, thereby generating a spectral pattern of spectra. It is determined whether an energy ratio is higher than a threshold level. The energy ratio is a ratio of each spectral energy to subband energy in a subband that involves the spectrum. The subband is involved in subbands into which a frequency band is separated with a specific bandwidth. It is determined whether the per-frame signal is a speech segment, based on a result of the determination. Average energy is derived in the frequency direction for the spectra in the spectral pattern in each subband. Subband energy is derived per subband by averaging the average energy in the time domain.
A DTX decision method includes: obtaining sub-band signal(s) according to an input signal; obtaining a variation of characteristic information of each of the sub-band signals; and performing DTX decision according to the variation of the characteristic information of each of the sub-band signals. With the invention, a complete and appreciate DTX decision result is obtained by making full use of the noise characteristic in the speech encoding/decoding bandwidth and using band-splitting and layered processing. As a result, the SID encoding/CNG decoding may closely follow the characteristic variation of the actual noise.
Methods and compositions for reducing the incidence of C. jejuni bacteria infections in poultry and in humans and other animals are formulated to include C. jejuni antigens, and particularly CadF, FlpA and FlaA. The antigens may be provided in the form of polypeptides or by hosts that produce the antigens. Fibronectin binding proteins of C. jejuni may also be used to deliver substances of interest to humans and other animals.
An audio apparatus including a decorrelator for generating decorrelated signals by applying a phase shifting value adjusted based on a correlation difference between audio signals included in a multi-channel signal to the audio signals; and a speaker set including at least two speakers for outputting acoustic signals corresponding to the decorrelated signals.
A method for concatenating a first frame of samples and a subsequent second frame of samples, the method comprising applying a phase filter adapted to minimizing a discontinuity at a boundary between the first and second frames of samples.
An apparatus for encoding an audio signal having a stream of audio samples has: a windower for applying a prediction coding analysis window to the stream of audio samples to obtain windowed data for a prediction analysis and for applying a transform coding analysis window to the stream of audio samples to obtain windowed data for a transform analysis, wherein the transform coding analysis window is associated with audio samples within a current frame of audio samples and with audio samples of a predefined portion of a future frame of audio samples being a transform-coding look-ahead portion, wherein the prediction coding analysis window is associated with at least the portion of the audio samples of the current frame and with audio samples of a predefined portion of the future frame being a prediction coding look-ahead portion, wherein the transform coding look-ahead portion and the prediction coding look-ahead portion are identically to each other or are different from each other by less than 20%; and an encoding processor for generating prediction coded data or for generating transform coded data.
Displaying media items on a map includes: obtaining a plurality of media items; selecting a first representative media item that defines a first region; determining a first set of media items that belong to the first region; selecting a second representative media item, wherein the second representative media item does not belong to the first region, and the second representative media item defines a second region; determining a second set of media items that belong to the second region; and displaying on the map a first set of media items that belong to the first region and a second set of media items that belong to the second region, including displaying the first representative media item on the map at a first location corresponding to the first region, and displaying the second representative media item on the map at a second location corresponding to the second region.
Disclosed is a screen synthesizing device which can achieve greater power saving effects when synthesizing a plurality of display screens containing moving images, without affecting the display result. In the disclosed device, a synthesis destination allocation determination unit (105) determines to synthesize the display layer which is the object of determination among the plurality of display layers including a first display layer having the first frame as a synthesis destination candidate and a second display layer having the second frame as a synthesis destination candidate, in either the first frame or the second frame on the basis of layout information which shows the positional relationship between the display layer which is the object of determination and a determination reference region which corresponds to the display layer which is the object of determination, and on the basis of the synthesis processing costs of the first frame and the second frame.
Disclosed is a shift register for use in a display driving circuit that simultaneously selects signal lines, including, in a stage thereof: a flip-flop including an initialization terminal; and a signal generating circuit that receives a simultaneous selection signal and that generates an output signal of the stage by use of an output of the flip-flop, wherein: the output signal of the stage becomes active due to an activation of the simultaneous selection signal so as to be active during a period of the simultaneous selection; the output of the flip-flop is non-active while the initialization terminal, a set terminal, and a reset terminal of the flip-flop; and the initialization terminal of the flip-flop receives the simultaneous selection signal. This shift register makes it possible to downsize various drivers.
Systems, methods, and devices for column inversion are provided. In one example, an electronic display may include a display panel having columns of pixels and display driver circuitry. The display driver circuitry may include source amplifiers and demultiplexers. Each demultiplexer may channel data output by at least one source amplifier to one of three columns of pixels. The display driver circuitry may drive the display panel according to a 3-column inversion scheme using one source amplifier per demultiplexer per frame of image data.
A scan driver includes a first decoder generating a plurality of output signals through a plurality of first logic gates, and a second decoder including a plurality of first logic circuits connected to a first terminal of a plurality of scan lines and a plurality of second logic circuits connected to a second terminal of the plurality of scan lines. The plurality of first logic circuits supply a source current to a corresponding scan line according to the corresponding output signal among the plurality of output signals. The plurality of second logic circuits sinks a sink current to the corresponding scan line according to the corresponding output signal among the plurality of output signals.
A pixel circuit including: an electrooptic element; a hold capacitor; a write transistor writing a drive voltage corresponding to a video signal supplied to one of main electrode terminals thereof to the hold capacitor; and a drive transistor driving the electrooptic element in accordance with the drive voltage written to the hold capacitor. A pixel circuit is adapted such that it can suppress turn ON of the electrooptic element during a first processing in which a current is supplied to the hold capacitor through the drive transistor while the drive voltage corresponding to the video signal is written to the hold capacitor through the write transistor.
To reduce a pseudo contour which occurs when displaying by a time gray scale method. When gradation is expressed with an n bit, bits each of which is shown by a binary of the gray scales are divided into three bit groups, and one frame is divided into two subframe groups. Then, a (0
An organic light emitting display device and a testing method thereof for detecting a failure occurring in a cutting process of a protective film attached to an upper end of a panel. The organic light emitting display device includes a first substrate on which a pixel unit and a tester are formed. The pixel unit includes a plurality of pixels positioned at intersection portions of scan lines and data lines, and the tester includes a plurality of transistors coupled to the respective data lines so as to supply test signals to the data lines. The transistors are divided into at least two groups, so that transistors of one group are turned on/off by a first test control line, and transistors of another group are turned on/off by a second test control line, the first and second test control lines being disposed on opposite sides of the substrate.
In a three dimensional video display device (1), an LED unit (10) rotates in the direction of the arrow (24) along top and bottom edges of a display section (28). The LED unit (10) has a left-eye LED array (6) and a right-eye LED array (8), each including plural LEDs (4) aligned in a column. The left-eye LED array (6) displays a left-eye image through an afterimage effect produced by displaying, while rotating, columns of pixel groups constituting the left-eye image. The right-eye LED array 8 displays a right-eye image through an afterimage effect produced by displaying, while rotating, columns of pixel groups constituting the right-eye image. Light from the left-eye image enters the left eye of a viewer, whereas light from the right-eye image enters the right eye. The viewer recognizes a three dimensional image in a range of 360° around the viewer based on binocular parallax.
A modification kit for converting an existing signage mounting structure to an electronic sign generally includes a plurality of display modules; a plurality of sign sections each having a front-facing portion and a rear-facing portion, the front facing portion defining a two dimensional array of bays arranged in a plurality of rows along a vertical direction and a plurality of columns along a horizontal direction, each bay configured to receive one of the display modules, the rear-facing portion for mounting to a surface of the existing signage mounting structure; and a plurality of power routing systems, each power routing system having a power input for coupling to a power source and a plurality of power extensions, each power extension for coupling the power source to one of the plurality of display modules. The modification kit when installed provides the electronic sign.
Articles are provided that in some embodiments comprise a convex front face, a first slot disposed along the left of the face and a second slot disposed along the right of the face. Therein, articles are configured so that the slots can receive opposite edges of a rigid cardstock item, such as a personal identification card, the cardstock item being insertable into the articles and the slots being configured to hold a surface present on such a cardstock item so inserted to be in contact with, and mechanically biased towards, said front face. Articles in some embodiments provided are attachable to headwear using conventional means such as adhesives and any suitable conventional hardware. In other embodiments are provided headwear, including hardhats and bump hats, which incorporate features of the articles provided. Additional embodiments of an article which will hold an identification card or other rigid card stock in the vertical (or portrait) orientation as well as in the horizontal (or landscape) orientation. The article may be comprised of a single construct and mounted onto the outer shell of various headwear or the article may be incorporated directly into the outer shell of various headwear.
A security seal 10 comprises a strap portion 12 made of plastic and a lock portion 14 attached to the strap portion. The lock portion 14 includes a metal jaw with an aperture. In use, the strap portion 12 is guided into the lock portion 14 and pulled to provide an interference fit between the lock portion 14 and the strap portion 12. The security seal 10 deters tampering since efforts to pull the strap portion 12 will either result in snapping of the strap portion 12 or visible stress-induced damage to the strap portion 12.
A children's instructional floor exercise apparatus for developing physical, cognitive and social skills. The apparatus has a plurality of tiles that have an anatomy indicium and an independent tile orientation indicium. When the tiles are placed in a predetermined pattern and with each tile's orientation indicia indicating the same rotational orientation, the anatomy indicia correspond to a predetermined physical movement designed to exercise a specific muscle group and develop a specific physical skill. The apparatus may be provided with written instructions describing the desired tile pattern and physical movement. Multiple apparatus may be provided in a set so as to create an obstacle course of movements, with each obstacle designed to work with and complement other obstacles in the set to provide a well-rounded exercise routine.
An educational electronic book (e-Book) facility that may be suitable for use in public school classrooms and many other environments may be based on an encapsulated HTML technology to facilitate complete interactive operation without use or risks associated with an external network connection, such as the Internet.
Method, system, and computer program product for performing an operation for automatic electronic book augmentation. The operation presents an electronic book via a display screen of an electronic device, and identifies user preferences. The operation then determines a current reading position of a user within the electronic book. The operation then identifies, based on the user's current reading position, a context within the electronic book. The operation then identifies, based on the context and the user preferences, sensory effects to enhance the user's experience. The operation then outputs the sensory effects.
An apparatus for providing drive assist information depending on a driving experience amount in a country and/or region where a host vehicle currently travels. The apparatus includes a processing unit configured to determine a country and/or region where a host vehicle currently travels, determine whether or not a driving experience amount of a driver in the determined country/region reaches a predetermined reference value, and to stop providing at least a part of the assist information related to the country and/or region where the host vehicle currently travels, if the driving experience value reaches the predetermined reference value.
The general field of the invention is that of methods for determining safety zones surrounding an aircraft travelling or taking off from an airport zone, the safety zone being calculated at a determined instant that may be the present instant or the future instant. The method according to the invention comprises at least the following steps: Step 0: Establishment of a convex safety envelope surrounding the aircraft on the basis of reference points taken on the aircraft; Step 1: Establishment of a first convex envelope safety zone surrounding the aircraft on the basis of reference circles taken on the aircraft, each circle having as center one of the reference points and as radius the value of the uncertainty in the exact position of the aircraft. Other steps of the method make it possible to refine this first safety zone depending on whether the aircraft is in a taxiing or takeoff phase and depending on whether it is calculated at the present instant or at the future instant.
A traffic information system for a vehicle comprises a transmitter and a global positioning system (GPS) associated with the vehicle that selectively generates location and vector data. A control module receives the location and vector data and wirelessly transmits the location and vector data using the transmitter when the vehicle is traveling on a first set of predetermined roads and does not transmit the location and vector data when the vehicle is traveling on a second set of predetermined roads.
A hygiene compliance system comprising personnel tags each having a respective status indicator that may be set to a first value indicating hygiene compliance or to a second value indicating hygiene non-compliance. Monitors for target zones, e.g. patients' beds, detect the presence of the personnel tags at the target zone. Monitors for hygiene stations, e.g. washbasins, detect the presence of the tags at the hygiene stations. When the hygiene station monitor detects that a hygiene station has been used, the respective tag is set to the first value. The target zone monitor checks the status of tags detected in its target zone and may issue a warning if the status indicates hygiene non-compliance. When the person leaves the target zone, the target zone monitor changes the respective tag's status to the second value.
An integrated security system integrates broadband and mobile access and control with conventional security systems and premise devices to provide a tri-mode security network that with remote connectivity and access. The integrated security system includes a touchscreen providing security keypad functionality as well as content management and presentation, and is used as a security system interface and an interface for interacting with a network. The integrated security system delivers remote premise monitoring and control functionality to conventional monitored premise protection and complements existing premise protection equipment. The integrated security system integrates into the premise network and couples wirelessly with the conventional security panel, enabling broadband access to premise security systems. Automation devices can be added, enabling users to remotely see live video or pictures and control home devices via a personal web portal, mobile phone, or other client device. Users can receive notifications of detected events via electronic message.
A system for parimutuel wagering on actual past events includes, in one embodiment, a video server including a database having video images of gaming events stored therein, a game server including a computer system configured to facilitate pari-mutuel wagering on actual past events and to permit a player to select a percentage weight for each of a plurality of handicapping factors, and a plurality of terminals. The video server and plurality of terminals are communicatably coupled to the game server.
A gaming system including a central server linked to a plurality of gaming machines is provided. The gaming system includes a plurality of progressive awards arranged in a hierarchy. Upon the occurrence of a triggering event or qualifying condition, a bonus game is started. A player can win a next higher progressive award by accumulating award values. If the player's total award value is greater than or equal to a trigger value for a progressive award, the player wins the progressive award. Unless a termination condition occurs, the bonus game continues. The total award value is set to the progressive award value. Alternatively, the progressive award value is added to the player's total award value. The trigger value for a progressive award can be the startup value for that progressive award.
The disclosed embodiment relates to methods, apparatus, and computer-readable media for enabling real-time competition. An exemplary computer-implemented method executed by one or more computing devices for enabling real-time competition between users according to the disclosed embodiment includes, for example, receiving information from a first user computing device associated with a first user corresponding to the first user's competitive position regarding a real-time event, transmitting information to a second user computing device associated with a second user identifying the real-time event, receiving information from the second user computing device corresponding to the second user's competitive position regarding the real-time event, and transmitting information to the first user computing device and the second user computing device regarding an outcome of the real-time event relative to the first user's competitive position and the second user's competitive position.
A wagering game system and its operations are described herein. In embodiments, the operations can include determining a player account, from a network wagering venue, that is eligible to participate in a network-wide wagering game event, and selecting the player account to be a player that performs for an audience of other users from the network wagering venue. The player can win at least some portion of awards by playing a wagering game during the network-wide wagering game event. Audience member users can participate in the event using interactive features (e.g., betting features, chat features, etc.) presented in a presentation, or view, of the network-wide wagering game event. The operations can also include involving, or incorporating, the audience members, into the network-wide wagering game event in a variety of ways, such as assisting the player participant to perform better at the wagering game, engaging in side-bets, receiving awards, etc.
A portable electronic device includes a first interface adapted for establishing a communication with a first external electronic entity. A first security element is adapted for detecting at least one type of attack and forbidding at least one data communication using the first interface after the detection of an attack. A second interface is different from the first interface and is adapted for establishing a communication with a second external electronic entity. A management element of the first security element uses the second interface for managing the first security element.
Provided is a fare box which enables passengers to smoothly pay fares using bills without hesitation even when a bill transportation passage is disabled due to jamming of a bill or a breakdown. Two entrances, which are a bill normal receiving opening and a bill backup receiving opening, are provided as bill receiving openings of the fare box. Either of the bill normal receiving opening and the bill backup receiving opening is allowed to be selectively opened by a shutter member. At normal times, the bill normal receiving opening is put into operation with the shutter member positioned at a normal position. When a bill normal transportation passage has become jammed with a bill, the shutter member is shifted from the normal position to a bypass position on the basis of an operation performed on a bill receiving opening switch lever, whereby the bill backup receiving opening is opened instead of the bill normal receiving opening.
A vehicle data gathering apparatus that implements a vehicle data gathering method includes: a bus use rate detection means connected to an in-vehicle network for detecting a bus use rate in the in-vehicle network; a selection setting means for selecting and setting a plurality of data request signals to be transmitted to at least one of a plurality of ECUs; a transmission interval setting means for setting a uniform transmission interval for each data request signal in a predetermined period on the basis of the number of the data request signals set by the selection setting means; and a request signal transmission means for transmitting each data request signal at the set uniform interval when it is determined that the bus use rate is lower than a first threshold value.
Provided is an avatar service system and method for providing an avatar in a service provided in a mobile environment. The avatar service system may include a request receiving unit to receive a request for the avatar to perform an action, an image data selecting unit to select image data and metadata for body layers forming a body of the avatar in response to the request, and based on the selected body image data to further select image data for a plurality of item layers disposed on the body of the avatar, and an avatar action processing unit to generate action data for applying the action of the avatar based on the selected image data and metadata.
An example information processing apparatus includes: an operation part; an attitude output part outputting, in time series, attitude data corresponding to attitude; an information storage part storing, in time series, information relevant to the attitude data outputted by said attitude output part; a display processing part, in correspondence to the attitude data outputted by said attitude output part, performing processing concerning display of a three-dimensional virtual space; an information acquiring part, from the information stored in time series by said information storage part, acquiring information corresponding to the time preceding by a given period the time that operation was performed on said operation part; and an information processing part, on the basis of the operation performed on said operation part and the information acquired by said information acquiring part, performing information processing.
Provided is a server for transmitting a handwriting animation message. The server includes a receiver for receiving handwriting animation message data including coordinates and time information of points forming user input handwriting information, an information analyzer for analyzing specifications of a receiving mobile terminal which is to receive the handwriting animation message data to determine whether the receiving mobile terminal can reproduce the handwriting animation message, a data converter for converting the handwriting animation message data into a reproducible format if the receiving mobile terminal is not capable of reproducing the handwriting animation message, and a data transmitter for transmitting the converted format instead of the handwriting animation message data.
In general, aspects of this disclosure describe example techniques for efficient storage of data of various data types for graphics processing. In some examples, a processing unit may assign first and second contiguous range of addresses for a first and second data type, respectively. The processing unit may store at least one of graphics data of the first or second data type or addresses of the graphics data of the first or second data type within blocks whose addresses are within the first and second contiguous range of addresses, respectively. The processing unit may store, in cache lines of a cache, the graphics data of the first data type, and the graphics data of the second data type.
A computer implemented method (350) for determining a centerline of a three-dimensional tubular structure is described. The method includes providing an edge-detected data set of voxels that characterize a boundary of the tubular structure according to a three-dimensional voxel data set for the tubular structure (360). A gradient field of a distance transformation is computed for the edge-detected dataset (380). A voxel data set corresponding to a centerline of the tubular structure is computed according to derivative of gradient field (390).
The disclosure provides a method for image processing, including: loading and decrypting an image file to obtain an original image, and saving the original image; shrinking the original image to obtain a pending image with a preset resolution, and saving the pending image; editing the pending image and previewing the pending image in real time; and editing the original image after the real-time previewing. The disclosure also provides a system for image processing. the disclosure can increase efficiency of real-time preview at the time of image editing.
Provided are an apparatus and method for converting a low-resolution depth image to a depth image having a resolution identical to a resolution of a high-resolution color image. The depth image conversion apparatus may generate a discrete depth image by quantizing a depth value of an up-sampled depth image, estimate a high-resolution discrete depth image by optimizing an objective functions of the discrete depth image based on the high-resolution color image and an up-sampled depth border, and convert the up-sampled depth image to a high-resolution depth image by filtering the up-sampled depth image when a difference between discrete depth values of neighboring pixels in the high-resolution discrete depth image is less than a predetermined threshold value.
An image-based content item is analyzed to determine one or more interests of a viewer of the content item. The analysis may include performing image analysis on the content item to determine geographic information that is relevant to an image of the content item. The one or more interests may be determined based on an assumption or probabilistic conclusion about a subject of the content item. Further, the one or more interests may be determined by applying one or more rules that utilize the geographic information. For some embodiments, a supplemental content item may be provided to the viewer based on the one or more interests.
Methods and apparatus for managing information relating to recycling activities are described. One embodiment described herein is directed to a method for accessing aggregated recycling information for use and/or display in connection with an account-based recycling program. The method comprises receiving first and second container information, the first container information concerning a plurality of first containers for a first recycling transaction and the second container information concerning a plurality of second containers for a second recycling transaction. The first and second container information is stored and associated account information concerning at least one to consumer account. The method further comprises accessing, in response to receiving a query relating to a plurality of recycling transactions, information relating to at least the first and second containers so as to enable the use and/or display of aggregated recycling information.
A social choice engine is disclosed for eliciting and receiving responses to questions or issues and ranking the responses using the Borda ranking system. The social choice engine provides a user interface to a survey administrator that allows for the defining of the social choice survey. The social choice engine also provides a pick list of possible participants, where the possible participants are members of an online community. To administer the social choice survey, the social choice engine sends electronic notifications to selected participants. The participants respond to the social choice survey through a user interface that includes interactive features. The results of the social choice survey are then displayed to the survey administrator.
Techniques for facilitating shopping for items shown in media content events are described. Some embodiments provide a shopping facilitator as part of a media device, such as a set-top box. As the media device presents a media content event showing multiple items, the shopping facilitator is configured to receive an indication that a viewer is interested in purchasing one of the multiple items. The shopping facilitator then identifies the item of interest, and at a later time provides a shopping facility that can be can be used by the viewer or some other user to purchase the item. In some embodiments, the media content event is presented without any indication that items shown in the media content event are for sale. Furthermore, the shopping facilitator may perform its functions without interrupting or otherwise disrupting the viewing of the media content event.
Determining recommendation data is disclosed, including: extracting a first set of keywords from a set of user action logs that occurred prior to a predetermined time point and determining a weight value for at least one of the first set of keywords; extracting a second set of keywords from a set of user action logs that occurred subsequent to the predetermined time point and determining a weight value for at least one of the second set of keywords; merging at least a portion of the first set of keywords and at least a portion of the second set of keywords to obtain a third set of keywords and determining a weight value for at least one of the third set of keywords; matching the third set of keywords to a database of data that can potentially be recommended to a user; and in the event that a piece of data is determined to match at least one keyword from the third set of keywords, determine that the piece of data is to be recommended to the user.
Systems and methods for improving the delivery of interactive advertisements are discussed herein. Systems and methods include approaches and solutions for boosting the rank of certain ads and/or ad types based on a combination of their interaction type and an ad interaction history for a given user, vertical, or aggregate indicator. Systems and methods also include suppressing ads unlikely to be interacted with from ranking and format boosting based on such ad interaction history.
Methods, systems, and apparatus, including computer programs encoded on a computer-readable storage medium, for serving content to a user. A method includes: receiving a request for content from a user, the content to be displayed in a slot associated with an online resource; determining an expected activity score for the user based at least in part on one or more criteria associated with a context of presenting the online resource to the user; comparing the expected activity score for the user to a threshold; selecting one or more content items to serve to the user based at least in part on the comparison; and serving the selected content items to the user responsive to the request.
A mechanism, in a data processing system, is provided for defining marketing strategies. The mechanism dynamically obtains information related to customer interactions associated with a plurality of customers, analyzes the information to identify patterns, selects patterns to define a marketing strategy for a marketer, and defines a marketing strategy based on the selected patterns.
Content is obtained from a webpage accessed via a URI, which URI is obtained from a URI queue. The content is parsed for price and product information according to a parse map, with the resulting parse result being stored. The priority of URIs in the URI queue is adjusted based on analysis of the parse result for changes in price and product attributes and according to other criteria. The parse map may be one associated with the URI or a general purpose parse maps. The parse result may be validated by human- and machine-based systems, including by graphically labeling price and product information in the content for human confirmation or correction.
Methods, systems and apparatus are described for determining eligibility for a location-based shipping option for multiple fulfillment networks. Embodiments may send display information to a user in response to a user request for display information for one or more items offered on a network-based site. The display information may be configured to indicated whether items are eligible for an enhanced shipping option based upon the shipping origin of the item and a predicted shipping destination. Some embodiments may provide multiple fulfillment networks with the enhanced shipping option. Some of the fulfillment networks may be controlled by an entity different from the entity controlling the network-based site. In some embodiments the enhanced shipping option is an option within a subscription-based shipping program for the network-based site.
A method performed by a processing system includes receiving a recommendation from a source user in response to performing an action corresponding to an action context of the recommendation, determining whether the source user appears in social network information of a target user, and distinguishing a presentation of the recommendation to the target user in response to the source user appearing in the social network information of the target user.
The disclosure describes computer-implemented methods, software, and systems for managing content of a virtual workspace that include identifying an electronic communication addressed to a communication account associated with an enterprise computing system, the electronic communication comprising unstructured data content; parsing the unstructured data content to determine one or more keywords defined by one or more specified keyword symbols; creating an enterprise workspace (EWS) object based on the determined one or more keywords and the unstructured data content; generating EWS content from the EWS object; and preparing the generated EWS content for display to the enterprise user.
The disclosed methods and systems can be used to manage at least one asset in an Enterprise, where the methods and systems include providing a first server, the first server configured to include at least one asset profile associated with the at least one asset, the first server controlled by the Enterprise, and receiving at the first server, in response to a request to a distinct second server, data associated with at least one vulnerability associated with the at least one asset, where the second server is outside the control of the Enterprise.
A method for tracking and reporting material movements and responding to material movements. Tracked-components are assigned a component identifier which can be associated with a location. The identifier is associated with a first location, and in response to a movement trigger, the location associated with the identifier is updated to a second location. A component can be comprised of multiple sub-components, each of which itself is a tracked component. When the location of the component is updated, the location of each sub-component is similarly updated. Each update of the location of a component can trigger reports or other actions within the system.
A business object model, which reflects data that is used during a given business transaction, is utilized to generate interfaces. This business object model facilitates commercial transactions by providing consistent interfaces that are suitable for use across industries, across businesses, and across different departments within a business during a business transaction. In some operations, software creates, updates, or otherwise processes information related to a budget availability control register, a financial accounting view of work order, a funds commitment document, an insurance contract, and/or a project cost estimate business object.
Techniques are disclosed for integration, provisioning and management of entities and processes in a computing system such as, by way of example only, business entities and business processes. In particular, techniques are disclosed for implementing an extensible support system for multiple service offerings. For example, such a support system can be a business support system which may be employed in conjunction with a cloud computing environment.
Techniques for producing probabilistic event networks (Bayesian network based representation of node dependencies, whereas nodes comprise event occurrences, explicit times of occurrences, and the context of event occurrences) based on distributed time-stamped data are disclosed. An aspect provides a method for predicting events from event log data via constructing a probabilistic event net and using the probabilistic event net to infer a probabilistic statement regarding a future event using a network inference mechanism. Other embodiments are disclosed.
The recognition rate is improved and recognition errors suppressed when recognizing magnetic ink characters. The character recognition unit 80 of a check reader 1 recognizes a magnetic ink character 101 by performing magnetic recognition based on comparing reference waveform data with character waveform data acquired by reading the magnetic ink character 101 with a magnetic head 54, and optical recognition based on comparing reference image data with image data acquired by reading the magnetic ink character 101 with a front contact image sensor 52; selects a plurality of candidates for the magnetic ink character 101 by magnetic recognition; and when plural candidates are characters with mutually similar character waveform data, determines that the one plural candidate character that matches the character recognized by optical recognition with reliability exceeding a specific threshold is the magnetic ink character 101.
A high-frequency device includes an antenna coil, a variable capacitance element, and an RFIC. The variable capacitance element is configured by capacitor units in each of which a ferroelectric film is sandwiched between capacitor electrodes, and a capacitance value changes according to a control voltage applied between the capacitor electrodes. A control voltage application circuit configured by a plurality of resistance elements of different resistance values, and a resistance element of the variable capacitance element unit configured to apply a control voltage to the variable capacitance element are arranged in a layered manner above the capacitor unit. Thus, a variable capacitance element and a high-frequency device that includes a control voltage application circuit eliminating problems such as distortion due to active elements and growing IC size along with complication of circuit architecture, and ensuring reliability on impact due to falling or the like, are provided.
A radio frequency device utilizing an antenna having a single antenna structure resonant on multiple resonant frequency ranges. The antenna can be configured to operate within multiple frequency ranges for communication according to respective protocols associated with the respective frequency ranges.
In a method for the detection and tracking of lane markings from a motor vehicle, an image of a space located in front of the vehicle is captured by means of an image capture device at regular intervals. The picture elements that meet a predetermined detection criterion are identified as detected lane markings in the captured image. At least one detected lane marking as a lane marking to be tracked is subjected to a tracking process. At least one test zone is defined for each detected lane marking. With the aid of intensity values of the picture elements associated with the test zone, at least one parameter is determined. The detected lane marking is assigned to one of several lane marking categories, depending on the parameter.
An image monitoring system includes a recorder that records an image captured by a camera via a network. The system is controlled to display the present image captured by the camera or a past image recorded on the recorder. A moving object is detected from the image captured by the camera, the detector including a resolution converter for generating an image with a resolution lower than the resolution of the image captured by the camera. A moving object is detected from the image generated by the resolution converter and positional information on the detected moving object is output. The positional information of the detected moving object is merged with the image captured by the camera on the basis of the positional information.
A device may include a video camera for capturing a video clip, a processor, a transmitter, and a receiver. The processor may be configured to receive, from the video camera, the video clip that is shown on a display screen of a content presentation device. The transmitter may be configured to send the video clip or a fingerprint of the video clip to a remote device. The receiver may be configured to receive, from the remote device, an identity of content whose fingerprints match the fingerprint.
Various embodiments of the present invention include a grazing routine that selects data objects from a data-object library or database based on selection-criterion values associated with each data object and provides the data objects to a presentation routine that uses the data objects to continuously update a data-object presentation. User input directs subsequent data-object selection by the grazing routine to allow users to intuitively navigate and search a large data-object library in order to locate one or a set of particular data objects. Users can input selection commands to specific presented data-objects in order to focus subsequent data-object selection and data-object presentation to increasingly smaller sub-populations of data objects. In the absence of user input, the sub-population of data objects from which data objects are selected for presentation may be increased.
Mechanisms are provided for relational context sensitive anonymization of data. A request for data is received that specifies a relational context corresponding to a selected group of selected persons selected from a global group of persons based on the relational context. The relational context specifies one or more attributes of selected persons in the selected group that establishes a relationship between the selected persons and distinguishes the selected persons from non-selected persons in the global group that are not in the selected group. For the relational context, based on a corpus of personal information data corresponding to the selected persons, key attributes in the personal information data are determined and a rarity value for each key attribute is determined. Selected key attributes are then anonymized based on the determined rarity value for each of the key attributes within the relational context of the selected group.
An internet and/or intranet based system and method for limiting access to confidential records to properly authorized and authenticated parties. The system's central premise is that the person to whom such records pertain should control access rights through specific, informed consent. It reinforces the widely held conception of privacy in general, while also providing an expedited and cost efficient means to find and transfer confidential records. It also gives the repositories where these records are held the right to stipulate the specific terms and conditions that must be fulfilled before they will release documents. And it carries out all of these legitimate interests in a way that is fast, simple to use and easy to audit. The system optionally includes a billing mechanism to pay for any added cost associated with providing this additional protection; and in its preferred embodiment, is applicable to both digital as well as non-digital records.
Provided are techniques for integrated masking for viewing of data. A record is encoded with a mask definition, wherein the mask definition describes which one or more portions of the record are to be hidden. A request to display the encoded record is received. The encoded record is displayed with the one or more portions of the record hidden based on the mask definition.
Systems and methods of token-based protection for links to media streams are disclosed. For example, a computing device may receive a media request in response to selection of a link to a media stream. The link may include a first token that is generated based on a private key and an encryption algorithm, and the media request may include the first token. The computing device may grant or deny the media request based on a comparison of the first token and a second token that is generated based on the private key and the encryption algorithm.
A method for controlling access to a digital file includes: associating digital content with a header, the header including data identifying a permitted access identity corresponding to a physical key removable from a reading computer. The method also includes encrypting the header and the digital content, the header being susceptible to decryption separate from the content by a key interface.
Architecture that stores specific passwords on behalf of users, and encrypts the passwords using encryption keys managed by a distributed key management system. The encryption keys are stored in a directory service (e.g., hierarchical) in an area that is inaccessible by selected entities (e.g., administrative users) having superior permissions such as supervisory administrators, but accessible to the account components that need to access the unencrypted passwords. The distributed key management system makes the encryption key stored in the directory service available to all hardware/software components that need the key to encrypt or decrypt the passwords.
A circuit for providing isolation in an integrated circuit is described. The circuit comprises a first circuit block having circuits associated with a first security level; a second circuit block having circuits associated with a second security level; and a third circuit block having programmable resources, the third circuit block providing isolation between the first circuit block and the second circuit block and being programmable to enable connections between the first circuit block and the second circuit block.
A customer server receives a client request to access protected resources over the Internet. First factor authentication is performed and if it is successful a vendor authentication engine is invoked to undertake second factor authentication. The results of the second factor authentication are returned to the customer server, which grants access only if both first and second factor authentication succeeds.
A method and system for evaluating and enforcing a data flow policy at a mobile computing device includes a data flow policy engine to evaluate data access requests made by security-wrapped software applications running on the mobile device and prevent the security-wrapped software applications from violating the data flow policy. The data flow policy defines a number of security labels that are associated with data objects. A software application process may be associated with a security label if the process accesses data having the security label or the process is in communication with another process that has accessed data having the security label.
A computerized method resets an unlocking password of an electronic device. Verification information used for resetting a first unlocking password currently used for unlocking the electronic device, and a destination for receiving a second unlocking password in place of the first unlocking password are preset in the electronic device. A request message from a terminal device is monitored in real-time, and checked for the inclusion of the verification information. The second unlocking password is generated, the first unlocking password of the electronic device is replaced by the second unlocking password, and the second unlocking password is sent to the destination if the verification information is included in the request message.
A branch auditing system can be automatically injected into a computer program, in one embodiment, in response to a programming call provided in source code by a programmer who has selected a particular branch, in a set of possible branches, for auditing. The branch auditing system can record, in an obfuscated data structure, a path taken at the particular branch and the parameters associated with the branch and later an auditor can determine whether the path taken was valid, and if the path taken was invalid, operations can be performed to protect the program, system and/or user.
Media content is delivered to a variety of mobile devices in a protected manner based on client-server architecture with a symmetric (private-key) encryption scheme. A media preparation server (MPS) encrypts media content and publishes and stores it on a content delivery server (CDS), such as a server in a content distribution network (CDN). Client devices can freely obtain the media content from the CDS and can also freely distribute the media content further. They cannot, however, play the content without first obtaining a decryption key and license. Access to decryption keys is via a centralized rights manager, providing a desired level of DRM control.
A memory device and method for updating a security module are disclosed. In one embodiment, a memory device is provided comprising a memory operative to store content and a controller in communication with the memory. The controller is configured to send an identification of the memory device's security module to a host and receive an identification of the host's security module. If the memory device's security module is out-of-date with respect to the host's security module, the memory device receives a security module update from the host. If the host's security module is out-of-date with respect to the memory device's security module, the memory device sends a security module update to the host.
Described is a technology by which a target machine (managed device) is provisioned with arbitrary states for subsequent communication with a central authority, in which the configuration provisioning of the device is decoupled from the collection of the provisioning data. In a provisioning phase, arbitrary state information for provisioning the managed device is obtained and packaged in a container. In a configuration phase, the container is accessed, and the arbitrary state information is unpackaged to apply state to the managed device. The target machine thus may be provisioned with arbitrary states without actively communicating with the central authority.
In order to always maintain connection relationships between substrates of the multi-board, a multi-board design apparatus for designing a multi-board comprising a plurality of substrates which are electrically connected is made to have: setting means by which a designer sets connection information indicating a connection relationship between each substrate configuring the multi-board; modification information detection means by which, when editing in an arbitrary substrate configuring the multi-board, modified content resulting from the editing is detected as modification information; and connection information modification means which, on the basis of the modification information which has been detected by the modification which has been detected by the modification information detection means, modifies the connection information which has been set in the setting means so as to maintain electrical connection relationships between each of the substrates in the multi-board.
Nodes in microdevice design data are selected to form initial clusters. Typically the nodes are selected based upon the type of process to be performed on the design data. The initial clusters are then be grown, merged with other nodes, or come combination of both until the processing costs of the final clusters are compatible with the amount of resources that will be used to process the design data.
A system and method of determining paths of components when placing and routing configurable circuits. The method identifies a probabilistic data flow through multiple components using a simplified connection matrix. The simplified connection matrix is used to determine a probabilistic data flow through the components without data flowing from any component to itself. The probabilistic data flow is used to determine a probabilistic data flow through the components with some of the components having data flowing from themselves back to themselves. The probabilistic data flow through each component and the number of inputs of the components are used to determine a cost for each component. The cost of a path through the circuit is determined from the costs of the individual components in the path. The costs of the components are used to determine which path of components to use.
A system, method, and computer program product for automatically providing circuit designers with verification information for analog and mixed-signal circuit designs. A graphical user interface based environment allows circuit designers to enter verification IP while simultaneously viewing the design IP in a schematic and/or layout editor window. Embodiments maintain the verification IP in a cellview similar to the separate cellviews used for schematic and layout data. Verification IP may be selectively translated into data that is directly exportable to and usable by particular analog and mixed-signal simulators. Embodiments direct design IP and verification IP to a simulator that dynamically stitches both together during circuit verification, and tangibly outputs verification results.
Management of data communication between a peripheral device and host computer system is provided. A peripheral device exposes to a host computer system multiple interfaces for data communication between the peripheral device and the host computer system. The multiple interfaces are exposed over a single physical interface between the peripheral device and the host computer system, for communicating data between the peripheral device and multiple applications executing on the host computer system. The multiple interfaces can include a data collection interface facilitating collection of data from the peripheral device by an application of the multiple applications executing on the host computer system.
An endoscope apparatus has an LCD which displays an endoscopic image, and an operation section. The endoscope apparatus stores an endoscopic image in a storage destination folder which is set as a storage destination for the endoscopic image from a plurality of folders which are created in a storage device in advance, displays information indicating the storage destination folder in a state in which the endoscopic image is displayed in the display section, and changes the storage destination folder in response to an operation of the operation section.
In one embodiment, a method comprises identifying user selection preferences of an identified user having accessed the network, the identifying based on an accumulation of user selection inputs executed by the identified user, relative to input options presented to the user and identifying respective available network items, the accumulation including an identification of the input options not having been selected by the identified user; determining a group of network users having a highest correlation of shared interests with the identified user, based on identifying preferred network items for the identified user, and identifying first network users providing highest relative user affinity values for each of the preferred network items; and determining at least one of new network items most likely to be preferred by the identified user, based on determining, from among network items not presented to the identifier user, the preferred network items for each of the first network users in the group.
A computer system includes at least two power supply units providing an output-side operating voltage from at least one input-side supply voltage, at least one power-consuming component operated in at least one normal operating mode with a first power consumption and operated in a restricted operating mode with at least one second power consumption lower than the first power consumption, the power-consuming component electrically coupled to the at least two power supply units; a controller coupled to the at least two power supply units and the power-consuming component; and at least one management component coupled to the controller.
A portable data terminal generally includes a housing supporting: a data collection device; a keypad; and a touch screen. One or more PDTs are provided with a monitoring system that records occurrences experienced by the portable data terminal. The record of occurrences may be analyzed to identify errors and/or failure prone parts of the PDT along with behaviors likely to lead to errors or failures. Additionally, the record of events may be analyzed to predict errors and/or failures for any given PDT.
An electronic book system is configured to allow a user to read a primary portion of an electronic book, then switch to reading a secondary portion of the book, the secondary portion being presented based on a current reading position for the main portion. A reader can repeatedly switch back and forth between primary and secondary portions without losing track of the reader's progress through the book. As an example, a reader in a textbook can immediately switch to a problem set corresponding to the reader's current position in the textbook.
Approaches for a distributed storage system that comprises a plurality of nodes. Each node, of the plurality of nodes, executes one or more application processes which are capable of accessing persistent shared memory. The persistent shared memory is implemented by solid state devices physically maintained on each of the plurality of nodes. Each the one or more application processes, maintained on a particular node, of the plurality of nodes, communicates with a shared data fabric (SDF) to access the persistent shared memory. The persistent shared memory comprises a scoreboard implemented in shared DRAM memory that is mapped to a persistent storage. The scoreboard provides a crash tolerant mechanism for enabling application processes to communicate with the shared data fabric (SDF).
A method of effectively representing and processing data sets with time series is disclosed. The method may comprise representing time series as a virtual part of data in a data store layer of a user system, thereby allowing processing of time-series related queries in said data store layer of said user system.
A technique for pattern matching is provided. A processing circuit receives an input string streamed in as input, and the input string is designated into substrings according to predefined bytes. A first substring of the substrings is in a first register to be compared against a pattern of the predefined bytes in a second register. The processing circuit compares the first substring in the first register to the pattern in the second register according to a type of evaluations specified in a third register, and determines state information that includes a number of states achieved for the pattern based on the comparison. The state information is stored in a fourth register to be utilized in a next run for a next substring of the substrings making up the input string, where the next run builds from the state information in the fourth register.
The present disclosure describes a method, an apparatus and a system of intelligent navigation. In one embodiment, a method includes: receiving a user inquiry from a client terminal; searching a navigation dictionary based on the user inquiry to obtain a recommendation result corresponding to the user inquiry, the navigation dictionary including an editor recommendation based on user behavior information; and sending the recommendation result to the client terminal. The present disclosure can enhance the accuracy, relevancy, richness and intelligence of the intelligent navigation, and reduce user search time as well as the search loading on the server.
A system determines whether a received search query includes an entity name, determines whether to rewrite the received search query based on information relating to prior searches involving the entity name, and rewrites the received search query when it is determined that the received search query should be rewritten. The system further determines whether to provide a suggestion of rewriting the received search query, as a rewriting suggestion, based on information relating to prior searches involving the entity name when it is determined that the received search query should not be rewritten. The system also generates the rewriting suggestion when it is determined that the rewriting suggestion should be provided. The system performs a search based on one of the received search query and the rewritten search query to obtain search results, presents the search results, and presents the rewriting suggestion when it is determined that the rewriting suggestion should be provided.
Disclosed are methods for creating, applying, using and retrieving profile information that includes attributes that may be stored separately from, or with, the content to which the profiles are being applied. In this manner, profiles can be shared in various environments and across various applications. Attributes that have corresponding attributes in other content can be applied to the other content, as long as each of the attributes is valid. In computer aided design applications, the profile can be stored in a profile repository embedded within the CAD model. In addition, profile controllers are disclosed which control the attributes of a profile that can be used with selected content and other content and send a notification that a profile is available for use by other content.
Atomically updating an in-memory data structure that is directly accessible by a processor includes comparing old information associated with an old version of the in-memory data structure with current information associated with a current version of the in-memory data structure; in the event that the old information and the current information are the same, replacing the old version with a new version of the in-memory data structure; in the event that the old information and the current information are not the same, determining a difference between the current version of the in-memory data structure and the new version of the in-memory data structure, and determining whether the difference is logically consistent; and in the event that the difference is logically consistent, merging a change in the current version with the new version.
A system for updating an index into a tuple table of tuples is provided. An indexing system updates an index into a tuple table using fine-grain locking of the index. The index includes a values table with an entry for each index value of an index field that references a value-tuple table that includes, for each tuple with the index value, a row that identifies a tuple of the tuple table with that indexed value. After a new tuple is added to the tuple table with a value, the index is updated by locking the entry in the values table, updating the value-tuple table for the value, and then unlocking the entry. When the index is accessed for locating tuples with a value, the accessor locks the entry in the values table for the value, uses the value-tuple table to locate the tuples, and unlocks the entry.
A real-time cloud imaging system includes at least a frontend device and a backend system. The frontend device generates an instruction message and a ROI (Region of Interest) message, and the backend system is coupled to the frontend device. The backend system has at least a raw image, wherein the raw image has a plurality of images of different resolutions. Each of the images and the raw image are composed of a plurality of tiles. The ROI message corresponds to a region of interest respectively within each of the images and the raw image. The backend system, according to the instruction message and the ROI message, selectively provides a grouping of the tiles within the region of interest of the raw image or one of the images to the frontend device.