Abstract:
The present disclosure discloses a lithium disilicate glass-ceramic with high strength and high transparency and a preparation method and use thereof. A raw material composition of the lithium disilicate glass-ceramic comprises: 63-75 wt % of SiO2, 13-18 wt % of Li2O, 1-6 wt % of Al2O3, 1-10 wt % of K2O, 2-6 wt % of P2O5, 0-4 wt % of an additive and 0-10 wt % of a colorant; a main crystal phase of the lithium disilicate glass-ceramic is lithium disilicate crystals, and an impurity phase of the lithium disilicate glass-ceramic is any one or a combination of at least two selected from the group consisting of lithium metasilicate, lithium phosphate and quartz; the lithium disilicate crystal has a size larger than 700 nm and a length-diameter ratio not less than 3.
Abstract:
A glass sheet of the present invention releases CO2 gas in an amount of 5.0 μL/g or less when the glass sheet is subjected to heat treatment under the conditions of 1,500° C. and 4 hours after having been subjected to preheating under the conditions of 900° C. and 1 hour.
Abstract:
The invention discloses a composition for preparing glass, a glass article and a use thereof, and a glass article made from the composition. The glass article is preferably a glass substrate made from a composition with an M value of from about 1 to about 10 as calculated by the empirical equation: M=0.13×wt (B2O3)×wt (B2O3)+0.42×wt (CaO)+0.55×wt (MgO)+0.75×wt (SrO)−0.05×wt (Al2O3)×wt (Al2O3). A use of the glass article (especially the glass substrate) for manufacturing a display device is disclosed herein, wherein the glass article has better properties, such as lowered content of solid inclusions and gas inclusions, lowered thickness range and lowered warpage.
Abstract:
The invention relates to a smoothing tool (3) configured for smoothing glass frit in a radioactive environment, in an induction-melting cold crucible. Smoothing tool (3) comprising a rod (30), a grid (50) configured to be in contact with glass frit (7) to be smoothed, and at least one vibrator (37, 55, 56) configured to make the grid (50) vibrate. The grid (50) is mechanically connected to the rod (30).
Abstract:
Apparatus includes a first and second conduits configured to form an annulus between them. An adjustable structure includes a body having an upper surface, a lower surface, and a circumferential surface abutting a portion of the internal surface of the second conduit. The structure is adjustable axially in relation to and removably attached to the first conduit via a hub. The hub defines a central passage for fuel or oxidant. The body has one or more non-central through passages configured such that flow of an oxidant or fuel therethrough causes the fuel or oxidant to intersect flow of fuel or oxidant exiting from the central passage in a region above the upper surface of the body.
Abstract:
The present disclosure provides an apparatus for eliminating a heterogeneous glass present in the top surface of a molten glass effectively, and a melting furnace and a glass manufacturing apparatus comprising the same. The apparatus for eliminating a heterogeneous glass according to one aspect of the present disclosure comprises a storage bath having an inlet and an outlet to receive a molten glass fed into the inlet and to discharge the received molten glass through the outlet, and an evacuating opening formed on the top of the storage bath, the evacuating opening allowing the received molten glass to overflow; a first gate being mounted close to the outlet of the storage bath to adjust an open area, thereby controlling the flow rate of the molten glass to be discharged through the outlet; and a second gate being mounted close to the inlet of the storage bath to control the height of the molten glass received in the storage bath at the section in which the evacuating opening is formed.
Abstract:
Apparatus includes a first and second conduits configured to form an annulus between them. An adjustable structure includes a body having an upper surface, a lower surface, and a circumferential surface abutting a portion of the internal surface of the second conduit. The structure is adjustable axially in relation to and removably attached to the first conduit via a hub. The hub defines a central passage for fuel or oxidant. The body has one or more non-central through passages configured such that flow of an oxidant or fuel therethrough causes the fuel or oxidant to intersect flow of fuel or oxidant exiting from the central passage in a region above the upper surface of the body.
Abstract:
Methods are provided for controlling the formation of defects in sheet glass produced by a fusion process which employs a zirconia melting unit. The methods comprise controlling the temperature profile of the glass as it passes through the finer, finer to stir chamber connecting tube, and stir chamber to minimize both the amount of zirconia which diffuses into the glass and the amount of secondary zirconia based defects which comes out of solution in the stir chamber.
Abstract:
A glass manufacturing container includes a container body and an electron donor. The container body is made of a precious metal or an alloy containing a precious metal and has an inner surface to be brought into contact with molten glass and an outer surface kept from contact with molten glass. The electron donor is electrically connected to the outer surface of the container body. The electron donor is made of an electron donating material capable of donating electrons to the container body at operating temperatures.
Abstract:
A backup structure for an uprising pipe or a downfalling pipe of a vacuum degassing apparatus including the uprising pipe, a vacuum degassing vessel and the downfalling pipe, comprises the uprising pipe or the downfalling being made of platinum or a platinum alloy and having refractory bricks disposed therearound; and the refractory bricks having a thermal expansion relief member disposed on a top end thereof, the thermal expansion relief member comprising a material selected from a metal material and a ceramic material having a creep strength (JIS Z2271: 1993) of 35 MPa or above at 760° C.