Abstract:
Embodiments of the present invention are directed to a method and an apparatus for preventing interference of geosynchronous satellites due to ground stations with misaligned antennas. In one embodiment, a two-way satellite ground terminal is configured to communicate with a geosynchronous target satellite which transmits a target satellite signal. The ground terminal comprises an antenna which is configured to receive the target satellite signal from the geosynchronous target satellite only if the antenna is oriented toward the geosynchronous target satellite. A transmitter is configured to transmit signals from the ground terminal via the antenna A signal detector is operatively coupled with the antenna and with the transmitter. The signal detector is configured to enable the transmitter to transmit signals from the ground terminal to the target satellite via the antenna only upon detecting the target satellite signal received by the antenna from the geosynchronous target satellite at a signal level above a preset threshold level.
Abstract:
A signal processing system is disclosed. The signal processing system comprises an antenna receiving a radio frequency (RF) signal. The signal processing system also comprises radio frequency circuitry coupled to the RF antenna, an analog to digital converter coupled to the RF circuitry and converting an analog signal from the RF circuitry to a digital signal. The signal processing further comprises a processing device generating a fast Fourier transform including N bins and an adaptive weight calculator calculating no more than (N/2)+1 weights based on information from at least (N/2)−1 bins, the no more than (N/2)+1 weights being applied to the output of the N bins in a weighted summation. Further, the signal processing system comprises an inverse fast Fourier transform calculator producing an inverse fast Fourier transform using the weighted summation.
Abstract:
A method and system is directed to aligning a point-to-multipoint access terminal to an access point. The access terminal provides an output signal, including first and second components, to a readout port. Signal strength that is associated with a received signal is encoded in the first component, while the authentication status of the communication link is encoded in the second component. The antenna alignment is adjusted while monitoring the signal strength via the readout port. The antenna is substantially aligned when the signal strength reaches a peak level. In one example, the signal strength is encoded in a DC component of the output signal, while the authentication status is encoded in an AC component of the output signal. The AC component of an AC encoded signal may have a varied amplitude and/or frequency.
Abstract:
A satellite antenna alignment device is provided which includes a base plate having a semi-globular-shaped member of dome secured thereto and extending upwardly therefrom which defines a sealed compartment which is filled with a liquid or gaseous medium. An indicator is positioned within the sealed compartment. The exterior surface of the dome is provided with elevational and skew angle indicia thereon. The device enables the antenna to be quickly and easily elevated to the proper elevation and skewed to the proper skew angle.
Abstract:
A multi-reflector antenna array capable of simultaneously transmitting and receiving communication signals at Ku-band frequencies is mounted on an exterior surface of an aircraft. The antenna array provides four cassegrain reflector antennas mechanically connected together in a group capable of being simultaneously mechanically scanned. A common support structure fixes the antennas with respect to each other. A drive mechanism and directional azimuth and elevation motors control the position of the array. The aerodynamic drag of the array is minimized using four antennas rather than a single large diameter antenna. Each antenna is positioned on a common horizontal centerline. Two centrally located antennas are positioned between two smaller diameter antennas. The antennas and positioning equipment are both mounted for rotation within a radome. A corporate power combiner/divider is provided to adjust both an amplitude and a phase of each antenna signal.
Abstract:
An apparatus and method, for determining an instrument boresight heading. The apparatus comprises an instrument having a boresight, an elevation positioner for positioning the elevation of the instrument boresight having an elevation axis, an azimuth positioner for positioning the azimuth of the instrument boresight having an azimuth axis and a sensor including a gyro having a sensitive axis. The method comprises recording a first output of a gyro of an azimuth positioner having an instrument boresight azimuth heading in a first position, rotating the azimuth positioner to a second position, recording a second output of the gyro and rotating the azimuth positioner to a third position, recording a third output of the gyro and determining the azimuth heading relative to true north from the first, second and third output.
Abstract:
The present invention provides an outboard test facility that is operable for testing a ship's direction finding antenna system in all directions as the ship circles while receiving test signals from the outboard test facility. The test facility provides a computer control operable for monitoring and storing signal power produced by any selected patch interconnections between a plurality of antennas, a plurality of radio frequency amplifiers and a plurality of signal generators at the outboard test facility. The computer control permits a single operator to monitor a signal analyzer to determine the optimum signal power for each of a list of signal frequencies to be broadcast to the ship based on the selected patch interconnection.
Abstract:
A stratospheric platform communication system (10) having antenna boresight angles (EL, AZ) that can be adjusted by an adjustable payload antenna (40) according to the requirements of a specific application. The present invention provides an efficient use of available resources by allowing platform systems (10) and GEO satellite systems to share the radio frequency spectrum without interference, and improves the coverage area provided by a stratospheric platform system by allocating stratospheric platforms (12) to specific coverage areas in combination thereby increasing coverage capacity in high traffic areas.
Abstract:
The recording section 114 records a highly reliable amount of correction for phase rotation, which is obtained in advance by a sufficient number of samples before commencement of communications. The measurement section 112 measures the amount of phase rotation of the known signals, and the comparison section 113 compares the measured amount of phase rotation with the amount of correction and renews the amount of correction from time to time during communications on the basis of the results of the comparison.
Abstract:
A method and apparatus for predicting uplink and/or downlink beamforming in a wireless communication system employing an antenna array. The method and apparatus may predict uplink and/or downlink weights as a function of previous uplink and/or downlink weights. An interpolation of a sample of uplink weights and/or downlink weights is used to predict a future uplink or downlink weight.