Abstract:
Provided herein are a semiconductor memory device and a method of operating the same. The semiconductor memory device includes a memory cell array including a plurality of memory cells, a status signal generator configured to output an internal status signal indicating whether an operation of the memory cell array has been completed or is being performed and a ready/busy line input mode control unit configured to output a ready/busy signal through a ready/busy line based on the internal status signal or to receive an input signal from an external device through the ready/busy line.
Abstract:
Systems, methods, and data structures are described which allow or caching streaming media file in a manner that allows for storage and retrieval of portions of the streaming media file that are temporally non-contiguous and/or encoded at differing bit rates.
Abstract:
A large bit size core memory which maximizes usable flux includes at least one array of low drive toroidal magnetic memory cores, a sense-inhibit conductor pair passing through the array in a given direction to inductively couple all cores in the array, a plurality of perpendicular drive conductors, each passing through the array perpendicular to the sense-inhibit conductor pair and inductively coupling a portion of the cores in the array, a plurality of parallel drive conductors, each passing through the array parallel to the sense-inhibit conductor pair and inductively coupling a portion of the cores in the array, and driving and switching circuitry coupled to drive selected a core during a read portion of a memory cycle with a current which rapidly increases to approximately provide the coercive force MMF to the core and then increases relatively slowly toward the full drive current. The resulting core output switching pulse received by a strobed sense amplifier has an early noise component from delta noise and coupling noise and a subsequent logic 1 switching pulse which is extremely stable with respect to normal variations in temperature and drive current, which has a flat, low magnitude peak that satisfies sense amplifier requirements and which is sufficiently delayed to permit attenuation of the noise signals.
Abstract:
Read/write structures for three-dimensional memories are disclosed. In one embodiment, a three-dimensional memory includes a plurality of data storage layers fabricated in parallel on top of one another to form a three-dimensional structure. Each data storage layer is able to store bits of data in the form of magnetic domains. The memory further includes a column of write elements that is operable to write a column of magnetic domains to the first data storage layer representing a column of bits. The first data storage layer is patterned into a plurality of magnetic conductors aligned transverse to the column of write elements. A control system may inject spin-polarized current pulses in the magnetic conductors to transfer the column of magnetic domains laterally within the first data storage layer. The control system may transfer of the column of magnetic domains perpendicularly from the first data storage layer to another data storage layer.
Abstract:
Disclosed herein is a semiconductor memory device for reducing a current consumption used for operating a write command or a read command. The semiconductor memory device includes a global data latch unit for latching a global data loaded on a global data line in response to a first write enable signal to thereby generate a global latch data; a local data write driving unit for receiving the global latch data to output a local data to a local data line in response to a second write enable signal; and a write driver control unit for generating the first write enable signal and the second write enable signal to inactivate the first write enable signal when a write operation is not performed.
Abstract:
A novel nonvolatile memory element or cell comprising a memory means consisting of at least one superconducting ring (21, 22) and a detector means consisting of a MOSFET. The superconducting ring and the MOSFET are arranged in such a manner that a magnetic flux created by the superconducting ring (21, 22) passes through a channel zone of the MOSFET. Information is held in the superconducting ring in a form of permanent current and is detected electrically as variation in the conductivity of the channel zone of the MOSFET.
Abstract:
Provided herein are a semiconductor memory device and a method of operating the same. The semiconductor memory device includes a memory cell array including a plurality of memory cells, a status signal generator configured to output an internal status signal indicating whether an operation of the memory cell array has been completed or is being performed and a ready/busy line input mode control unit configured to output a ready/busy signal through a ready/busy line based on the internal status signal or to receive an input signal from an external device through the ready/busy line.
Abstract:
Read/write structures for three-dimensional memories are disclosed. In one embodiment, a three-dimensional memory includes a plurality of data storage layers fabricated in parallel on top of one another to form a three-dimensional structure. Each data storage layer is able to store bits of data in the form of magnetic domains. The memory further includes a column of write elements that is operable to write a column of magnetic domains to the first data storage layer representing a column of bits. The first data storage layer is patterned into a plurality of magnetic conductors aligned transverse to the column of write elements. A control system may inject spin-polarized current pulses in the magnetic conductors to transfer the column of magnetic domains laterally within the first data storage layer. The control system may transfer of the column of magnetic domains perpendicularly from the first data storage layer to another data storage layer.
Abstract:
A semiconductor memory device includes an additive latency setting unit configured to receive a mode setting code from an external unit in response to the mode setting signal during a mode setting operation, set an additive latency value in response to the mode setting code, and receive the mode setting code in response to the additive latency setting signal during a normal operation, and an additive latency changing unit configured to change the additive latency value in response to the mode setting code during the normal operation.
Abstract:
Magnetic memories and methods are disclosed. A magnetic memory as described herein includes a plurality of stacked data storage layers to form a three-dimensional magnetic memory. Bits may be written to a data storage layer in the form of magnetic domains. The bits can then be transferred between the stacked data storage layers by heating a neighboring data storage layer, which allows the magnetic fields from the magnetic domains to imprint the magnetic domains in the neighboring data storage layer. By imprinting the magnetic domains into the neighboring data storage layer, the bits are copied from one data storage layer to another.