Abstract:
Disclosed is a teaching and playback method using a redundancy resolution parameter determined in conjunction with a joint structure, for a robot, and a method to apply analytic inverse kinematics to a robot having an elbow with an offset and a computer-readable medium of controlling the same. A reference plane variable with the joint structure is generated and an angle between the reference plane and an arm plane of the robot is used as the redundancy resolution parameter. The robot is taught and its operation is played back in differential inverse kinematics or analytic inverse kinematics using the resolution redundancy parameter.
Abstract:
A master-slave manipulator includes a slave manipulator, a master operation input device, and a control unit. The slave manipulator includes joints having multiple degrees of freedom. The master operation input device allows an operator to uniquely input a position and an orientation. The device includes a first operation unit configured to output the position and orientation, and a second operation unit including at least a joint configured to output value of the joint independently with the output of the first operation unit. The control unit calculates a driving amount of each joint of the slave manipulator using the position and orientation of the second operation unit and controls the slave manipulator in accordance with a joint driving command value.
Abstract:
Devices, systems, and methods are disclosed for cancelling movement of one or more joints of a telesurgical manipulator to effect manipulation movement of an end effector. Methods include calculating movement of joints within a null-perpendicular space to effect desired end effector movement while calculating movement of one or more locked joints within a null-space to cancel the movement of the locked joints within the null-perpendicular-space. Methods may further include calculating movement of one or more joints to effect an auxiliary movement or a reconfiguration movement that may include movement of one or more locked joints. The auxiliary and reconfiguration movements may overlay the manipulation movement of the joints to allow movement of the locked joints to effect the auxiliary movement or reconfiguration movement, while the movement of the locked joints to effect manipulation is canceled. Various configurations for devices and systems utilizing such methods are provided herein.
Abstract:
A robot system includes a robot and a robot control device. The robot has a plurality of joint axes including a redundant axis. The robot control device includes a first command generator, a limit avoidance command generator, a posture optimization command generator, a null space matrix calculator, a second command generator and a controller. The first command generator generates a first joint angular speed command for the robot. The limit avoidance command generator generates a joint angular speed command A for the robot for avoiding a state in which the robot reaches an operating limit. The posture optimization command generator generates a joint angular speed command B for the robot for optimizing a posture of the robot. The null space matrix calculator calculates a null space matrix of a Jacobian matrix related to a control point. The second command generator generates a second joint angular speed command for the robot.
Abstract:
Devices, systems, and methods are disclosed for cancelling movement one or more joints of a tele-surgical manipulator to effect manipulation movement of an end effector. Methods include calculating movement of joints within a null-perpendicular space to effect desired end effector movement while calculating movement of one or more locked joints within a null-space to cancel the movement of the locked joints within the null-perpendicular-space. Methods may further include calculating movement of one or more joints to effect an auxiliary movement or a reconfiguration movement that may include movement of one or more locked joints. The auxiliary and reconfiguration movements may overlay the manipulation movement of the joints to allow movement of the locked joints to effect the auxiliary movement or reconfiguration movement, while the movement of the locked joints to effect manipulation is canceled. Various configurations for devices and systems utilizing such methods are provided herein.
Abstract:
A CPU of a robot control device calculates load torque based on the inertia force, centrifugal force or Coriolis force, gravity force, friction torque, and actuator inertia torque applied to a joint axis of each link, each time an orientation parameter indicative of the link position and orientation allowed by a redundant degree of freedom is sequentially changed, under a constraint of end-effector position and orientation as target values. The CPU obtains the link position and orientation at which the ratio of the load torque to the rated torque of a rotary actuator provided for each joint is minimized, while the orientation parameter is being changed, and provides a feed-forward value that gives rise to each load torque obtained when the ratio of the load torque to the rated torque of the rotary actuator is minimized, to a control command generated to the rotary actuator of each joint axis for achieving the end-effector position and orientation as target values.
Abstract:
A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.
Abstract:
A method for automatically ascertaining an input command for a robot, wherein the input command is entered by manually exerting an external force onto the robot. The input command is ascertained on the basis of the joint force component attempting to cause a movement of the robot in only one robot joint coordinate sub-space which is specific to the input command. The joint forces are imprinted with the external force.
Abstract:
A redundantable robotic mechanism is disclosed for improving reliability of tranport equipment. The redundantable robot assembly typically comprises independent robots with separate controls, motors, linkage arms, or power, thus providing the capability of operation even if parts of the assembly are not operational or when parts of the assembly are removed for repair. The redundantable robot assembly can be also designed to allow in-situ servicing, e.g. servicing one robot when the other is running. The disclosed redundantable robot assembly provides virtual uninterrupted process flow, and thus greatly increases the yield for the manufacturing facility.
Abstract:
Devices, systems, and methods for cancelling movement one or more joints of a tele-surgical manipulator to effect manipulation movement of an end effector. Methods include calculating movement of joints within a null-perpendicular space to effect desired end effector movement while calculating movement of one or more locked joints within a null-space to cancel the movement of the locked joints within the null-perpendicular-space. Methods may further include calculating movement of one or more joints to effect an auxiliary movement or a reconfiguration movement that may include movement of one or more locked joints. The auxiliary and reconfiguration movements may be overlaid the manipulation movement of the joints to allow movement of the locked joints to effect the auxiliary movement or reconfiguration movement, while the movement of the locked joints to effect manipulation is canceled. Various configurations for devices and systems utilizing such methods are provided herein.