Abstract:
A power management device and microprocessor within a System-in-Package (SiP) are provided with communication signals externally available as outputs from the SiP so that they can be configured by an external device. Methods for the configuration of SiPs and Power Management Integrated Circuits (PMICs) packaged within a SiP are also provided.
Abstract:
An integrated circuit (IC), operable in internal and external testing modes (INTEST and EXTEST), includes first and second partitions and a functional path therebetween. The first partition includes a first scan chain, a first multiplexer, and a first flip-flop. The second partition includes a second flip-flop and a second scan chain. The first scan chain generates an EXTEST vector initialization signal, based on an EXTEST scan input signal. The first multiplexer receives an INTEST vector initialization signal and the EXTEST vector initialization signal, and generates a scan input signal. The first flip-flop generates a first output signal based on the scan input signal. The functional path provides a second output signal based on the first output signal. The second flip-flop generates a third output signal based on the second output signal. The second scan chain receives the third output signal and generates a test output signal.
Abstract:
In a first embodiment a TAP 318 of IEEE standard 1149.1 is allowed to commandeer control from a WSP 202 of IEEE standard P1500 such that the P1500 architecture, normally controlled by the WSP, is rendered controllable by the TAP. In a second embodiment (1) the TAP and WSP based architectures are merged together such that the sharing of the previously described architectural elements are possible, and (2) the TAP and WSP test interfaces are merged into a single optimized test interface that is operable to perform all operations of each separate test interface.
Abstract:
This disclosure describes a test architecture that supports a common approach to testing individual die and dies in a 3D stack arrangement. The test architecture uses an improved TAP design to facilitate the testing of parallel test circuits within the die.
Abstract:
A test architecture accesses IP core test wrappers within an IC using a Link Instruction Register (LIR). An IEEE P1500 standard is in development for providing test access to these individual cores via a test structure called a wrapper. The wrapper resides at the boundary of the core and provides a way to test the core and the interconnections between cores.—The test architecture enables each of the plural wrappers in the IC, including wrappers in cores embedded within other cores, with separate enable signals.
Abstract:
A test architecture accesses IP core test wrappers within an IC using a Link Instruction Register (LIR). An IEEE P1500 standard is in development for providing test access to these individual cores via a test structure called a wrapper. The wrapper resides at the boundary of the core and provides a way to test the core and the interconnections between cores. The test architecture enables each of the plural wrappers in the IC, including wrappers in cores embedded within other cores, with separate enable signals.
Abstract:
A test access architecture is disclosed for 3D-SICs that allows for both pre-bond die testing and post-bond stack testing. The test access architecture is based on a modular test approach, in which the various dies, their embedded IP cores, the inter-die TSV-based interconnects, and the external I/Os can be tested as separate units to allow optimization of the 3D-SIC test flow. The architecture builds on and reuses existing design for test (DfT) hardware at the core, die, and product level. Test access is provided to an individual die stack via a test structure called a wrapper unit.
Abstract:
In a first embodiment a TAP 318 of IEEE standard 1149.1 is allowed to commandeer control from a WSP 202 of IEEE standard P1500 such that the P1500 architecture, normally controlled by the WSP, is rendered controllable by the TAP. In a second embodiment (1) the TAP and WSP based architectures are merged together such that the sharing of the previously described architectural elements are possible, and (2) the TAP and WSP test interfaces are merged into a single optimized test interface that is operable to perform all operations of each separate test interface.
Abstract:
Integrated circuits may include at least an instruction processor and input-output subsystems. Each input-output subsystem includes a wrapper circuit a wrapper circuit controlled by the instruction processor. The wrapper circuit includes two or more scan registers, where a data value stored in each scan register can be shifted out for analysis. The wrapper circuit also includes two or more update registers to transfer stored data values between itself and an associated scan register. The wrapper circuit also includes a set of combinatorial logic coupled to the scan registers, the update registers and the instruction test processor, wherein at least two I/Os of the plurality of I/Os but less than all of the plurality of I/Os couple to an external tester.
Abstract:
A test architecture accesses IP core test wrappers within an IC using a Link Instruction Register (LIR). An IEEE P1500 standard is in development for providing test access to these individual cores via a test structure called a wrapper. The wrapper resides at the boundary of the core and provides a way to test the core and the interconnections between cores.-The test architecture enables each of the plural wrappers in the IC, including wrappers in cores embedded within other cores, with separate enable signals.