Abstract:
A device for launching using compressed fluid, comprises: a projectile, a barrel having two ends, the projectile being positioned inside the barrel, a first of the two ends allowing the compressed fluid to enter the barrel, a second of the two ends allowing the projectile to leave, a reservoir of compressed fluid connected to the first of the two ends of the barrel. A connecting device comprises a first tape, able to make the transition from a configuration in which it is wound about an axis Z around a support to a configuration in which it is deployed along an axis X substantially perpendicular to the axis Z, the tape having an end fixed to the projectile, and wherein the support is fixed in the barrel.
Abstract:
A cable handling system mounted to a mobile robot to dispense and retrieve cable at zero tension includes a cable reel drive and a downstream tension roller drive that includes an idler. As a cable passes through the tension roller drive, position along the length of the cable and/or the cable speed is monitored accurately by a sensor attached to the idler. A system controller in communication with the sensor controls the cable reel drive and the tension roller drive for dispensing and retrieving cable downstream of the tension roller drive.
Abstract:
An underwater vehicle including a housing, an internal guidewire dispenser for storing and deploying a guidewire, and a splice cavity defining a storage space, for carrying and deploying a splice between the internal guidewire and an external guidewire and excess guidewire resulting from splicing the internal and external guidewires.
Abstract:
In a method and apparatus for controlling the deployment of a towline connecting a mooring craft to an ejected object comprising the steps of monitoring velocity to determine when a point for optimum braking has been achieved and then engaging a brake system to retard deployment of the towline, a DC motor augments and controls the brake system. The DC motor further controls the retrieval of the object. A cutter mechanism uses a first blade to grip the towing cable to maintain tension thereon as a second blade cuts the cable. A spring biased boom in combination with spring biased fins on the ejected object rapidly deploys the object from its storage housing. A locking mechanism secures the deployment mechanism in a stable locked position upon the object reaching its fully extended position.
Abstract:
A cable handling system mounted to a mobile robot to dispense and retrieve cable at zero tension includes a cable reel drive and a downstream tension roller drive that includes an idler. As a cable passes through the tension roller drive, position along the length of the cable and/or the cable speed is monitored accurately by a sensor attached to the idler. A system controller in communication with the sensor controls the cable reel drive and the tension roller drive for dispensing and retrieving cable downstream of the tension roller drive.
Abstract:
Rapid coil deployment apparatus including a case that includes a first compartment in which are disposed a plurality of rapid coil assemblies and a second compartment in which are disposed a plurality of detonator canisters, each of the detonator canisters including an antistatic lining with a detonator housed therein, wherein each of the rapid coil assemblies includes an actuator including an at least partially hollow housing, a cap element removably mountable on the actuator, and a coil of electrical wire disposed inside the housing, a first portion of the coil being arranged for electrical connection with an electrical connector separate from the actuator and a second portion of the coil being arranged for electrical connection with the cap element, the coil being unwindable outwards from the at least partially hollow housing, and wherein each of the rapid coil assemblies is maintained operationally ready in the first compartment for rapid laying and is electrically connected to at least one of the detonators while still in the first compartment.
Abstract:
In a method and apparatus for controlling the deployment of a towline connecting a mooring craft to an ejected object comprising the steps of monitoring velocity to determine when a point for optimum braking has been achieved and then engaging a brake system to retard deployment of the towline, a DC motor augments and controls the brake system. The DC motor further controls the retrieval of the object. A cutter mechanism uses a first blade to grip the towing cable to maintain tension thereon as a second blade cuts the cable. A spring biased boom in combination with spring biased fins on the ejected object rapidly deploys the object from its storage housing. A locking mechanism secures the deployment mechanism in a stable locked position upon the object reaching its fully extended position.
Abstract:
A tactical surveillance sensor projectile system includes a propellant and primer chamber, a firing device, a sensor device, a signal processor, and a fiber optic cable; the firing device fires the primer and propellant to establish a powered phase of flight followed by a ballistic phase of flight to clear an obstacle; the sensor device generates surveillance signals representative of ambient characteristics beyond the obstacle at least during the ballistic phase of flight; the signal processor is responsive to the sensor device for converting the signals representative of ambient conditions to an optical data stream; and the fiber optic cable delivers the optical data stream to a ground station at least during the ballistic phase of flight.
Abstract:
This invention relates to a shock absorber for use with a command link controlled missile system. The shock absorber being designed to absorb the shocks produced by launch and missile movements and being particularly applicable to fibre optic command link systems.
Abstract:
An optical fiber canister (40) comprises a tapered cylindrical bobbin (42) having a length of optical fiber (28) wound thereon to form a fiber pack (43). The optical fiber (28) is wound so as to pay out with a preselected circumferential payout direction component (45), as well as a longitudinal payout direction component. The canister (40) has an optical fiber payout opening (50) through which the optical fiber (28) is paid out. An air duct (60, 62, 90) from the exterior of the canister (40) to the interior of the canister (40) has an air outlet (70) within the interior of the canister (40) oriented to direct the air flow oppositely to the preselected circumferential payout direction (45). The optical fiber canister (40) may be mounted within a missile (20), and the air duct (90) desirably extends from the exterior of the missile (20) to the interior of the canister (40), to provide a velocity-dependent air flow that damps out the helical motion of the optical fiber (28) during payout, permitting the optical fiber (28) to be paid out smoothly even though the payout opening (50) is small.