Abstract:
A forage harvester that includes a cutterhead assembly and two frame parts between which the cutterhead assembly is rotatably suspended. The forage harvester assembly is held on both frame parts by a clamp bearing that defines a rotary axis. Contact points between an element on the frame part side and an element on the assembly side of the clamp bearing lie on a spherical surface centered on the rotary axis.
Abstract:
Casing of a bearing unit for food applications, made of polymeric material and provided internally with a spherical seat for housing the bearing unit, the casing having a reinforcement in the form of a metal ring co-moulded inside the casing and accommodated around the spherical seat of the casing.
Abstract:
There is provided a rolling bearing including: inner and outer members, rolling elements in a raceway space, flexible annular sealing members which close openings at both ends of the raceway space, and annular metal shield members. Each sealing member is formed in three-dimensional shape such that the sealing member in a natural state is convex inwardly between outer and inner circumferential edge portions and the inner circumferential edge portion is elastically in surface contact with the outer surface of the inner member when the sealing member is fitted to the outer member. Each metal shield member is fixed to the outer member in a state that the outer circumferential edge portion of each sealing member is sandwiched between the metal shield member and the outer member. Each metal shield member covers part of each sealing member without contacting the inner member.
Abstract:
A split cylindrical bearing assembly having a first split outer ring with an inner radial self-aligning feature aligning axially with a second split outer ring having an outer radial self-aligning feature, the second split outer ring having two sections that are fixedly assembled and circumferentially aligned. A split inner ring having two sections fixedly assembled and circumferentially aligned is assembled within and axially aligned with the second split outer ring, and a split cage retaining rolling elements disposed between the second split outer ring and the split inner ring. Also the split cylindrical bearing assembly assembled onto a shaft and into a housing assembly.
Abstract:
Apparatus and methods are provided for locking retaining elements in place. One embodiment is a bearing having an outer race. The race has a first end and a second end. The race includes a flange on the first end that is able to mate with a housing, and the race also includes an annular threaded portion on the second end. The threaded portion receives an annular threaded retaining element that mates with the housing. The race additionally includes an annular protrusion on the second end, concentric with the threaded portion, that is able to be swaged, thereby increasing a diameter of the protrusion to overlap the threaded portion.
Abstract:
A tilling implement for use with a farm vehicle includes a frame, a tilling element attached to the frame, a bearing assembly configured to allow the tilling element to rotate relative to the frame. The bearing assembly can include a first race, a second race spaced apart from the first race to define a gap therebetween, a bearing rotatably disposed within the gap to allow relative movement between the first race and the second race, a seal including a flexible protrusion having a distal end that presses against the first race to seal off the gap, and a stop positioned adjacent to the flexible protrusion configured to prevent the distal end of the protrusion from bending towards the bearing.
Abstract:
A rolling-contact bearing comprising an inner ring, an outer ring with an outer surface in the form of a section of a sphere, rolling bodies between the inner ring and the outer ring, an encoder washer constrained to rotate with the inner ring, a sensor member being designed to detect a rotation of the encoder washer, and a support member having an inner surface in the form of a section of a sphere, the inner surface being designed to be in sliding contact with the outer surface of the outer ring. The support member is designed to hold the sensor member, in relation to the encoder washer, in a position in which the sensor member can detect a rotation of the encoder washer. The sensor member includes a transponder intended to communicate wirelessly with a detector.
Abstract:
An outer ring, an inner ring and a roller serving as a bearing component that adopts as a source material a steel ensuring a large fracture toughness value and also having an alloy element added thereto in a reduced amount and also provides sufficient wear resistance, are configured of a steel containing 0.15-0.3% by mass of carbon, 0.15-0.7% by mass of silicon, and 0.15-1.0% by mass of manganese, with a remainder of iron and an impurity, and have a raceway/rolling contact surface included in a region having a carbon enriched layer and a nitrogen enriched layer. In the nitrogen enriched layer the raceway/rolling contact surface has a nitrogen concentration equal to or larger than 0.3% by mass.
Abstract:
Embodiments of a bi-axial compliant bearing assembly and methods of assembling the bi-axial compliant bearing assembly are disclosed. A bi-axial compliant bearing assembly employs a transition bearing race. The transition bearing race comprises a cylindrical surface. The cylindrical surface is configured to rotatably engage a rotational bearing element and to slidably engage the rotational bearing element along an axis. The transition bearing race also includes a spherically-compliant surface. The spherically-compliant surface is configured to engage a spherically-compliant element and to enable the spherically-compliant element to rotate transversely to the axis.
Abstract:
A unit (1) for supporting the axle-shafts of go-karts provided with an annular body (12) having a variable perimeter and with a rolling bearing (20), set within the annular body (12) itself with the possibility of oscillation about an axis of adjustment (B) transverse to an axis (B) of rotation of the bearing (20) itself; a tightening system (30) being provided for tightening the support (11) on the bearing (20) and for blocking the bearing (20) itself in an operative position, and being defined by at least two sharp edges (32) (33) (36), fixed with respect to the bearing (20) and set about the axis (B) of rotation for cutting into a softer material of the concave seat (13), preventing any rotation of the bearing (20) about the axis (A) of adjustment in said operative position.