Abstract:
Aspects described herein generally relate to a method of coating a metallic surface. The method includes forming a solution including a corrosion inhibitor having one or more thiol moieties and a hydroxide. The metallic surface is coated with the solution to form a treated metallic surface. The treated metallic surface is further coated with an organosilane, an acid, and a metal alkoxide to form a coating system.
Abstract:
A method to prevent corrosion of a susceptible article of a two-article system, in which first and second articles of the two-article system have surfaces facing one another and in which the two articles have different anodic indices includes applying a coating material to the surface of the first article and curing the coating material on the surface of the first article. The method further includes contacting and securing the surface of the first article with the surface of the second article. The two articles exhibit substantially no corrosion following exposure to a corrosive environment under standard GMW17026 for a 15 year simulated test.
Abstract:
Certain configurations of coated articles that are corrosion resistant are described. In some embodiments, the article comprises a substrate and a corrosion resistant coating disposed on an entire surface or a portion of the surface of the substrate. The corrosion resistant coating can resist degradation after exposure to strong acids with a negative pH with a corrosion rate of less than 20 mils/year. The coating can also, if desired, exhibit a hardness of more than 600 Vickers hardness (HV), as measured based on the ASTM E92-17 standard.
Abstract:
A method to prevent corrosion of a susceptible article of a two-article system, in which first and second articles of the two-article system have surfaces facing one another and in which the two articles have different anodic indices includes applying a coating material to the surface of the first article and curing the coating material on the surface of the first article. The method further includes contacting and securing the surface of the first article with the surface of the second article. The two articles exhibit substantially no corrosion following exposure to a corrosive environment under standard GMW17026 for a 15 year simulated test.
Abstract:
A method for reducing the deleterious effects of sulfate reducing bacteria in aqueous environments, particularly those in which metal materials are exposed to the microorganisms. A treatment solution containing rotenone is introduced into the aqueous environment. The rotenone is present in the treatment fluid in an amount which is sufficient to inhibit the growth of sulfate reducing bacteria on the metal material.
Abstract:
Disclosed herein is a heat transfer system comprising a circulation loop defining a flow path for a heat transfer fluid, and a heat transfer fluid comprising a liquid coolant, a siloxane corrosion inhibitor of formula R3-Si—[O—Si(R)2]x-OSiR3, wherein R is independently an alkyl group or a polyalkylene oxide copolymer of 1 to 200 carbons, x is from 0 to 100, and further wherein at least one alkyl group and at least one polyalkylene oxide copolymer are present, and a non-conductive polydiorganosiloxane antifoam agent, wherein the conductivity of the heat transfer fluid is less than about 100 μS/cm, and wherein the heat transfer system comprises aluminum, magnesium, or a combination thereof, in intimate contact with the heat transfer fluid.
Abstract:
Oxidized and maleated derivative compositions, such as chemically modified oxidized and maleated tall oil fatty acid compositions, can be prepared and used in a variety of industrial applications, including as emulsifiers, corrosion inhibitors, concrete admixtures, and in reverse flotation mining applications.
Abstract:
A corrosion resistant article includes an aluminum substrate having greater than 0.25 wt % zinc, and a protective coating on the aluminum substrate. The protective coating includes a non-tungstate anodic corrosion inhibitor and a cathodic corrosion inhibitor.
Abstract:
A method for inhibiting corrosion due to dissolved oxygen wherein trihydroxybenzene compounds, alone or in combination with conventional oxygen scavengers, preferably hydroquinone, are added to boiler water to prevent corrosion by reducing dissolved oxygen levels in boiler feedwater.
Abstract:
The invention relates to a process making it possible to reduce the corrosion of metals and alloys of heat exchanger circuits where aqueous heat transfer fluids are circulating and which may contain anti-freeze products.The process consists in mixing with these aqueous heat transfer fluids on the one hand from 0.05 to 5 percent by weight of one or more salts of alkali metals or of amines of dicarboxylic aliphatic acids of the formula (CH.sub.2)n(COOH).sub.2 in which n is comprised between 2 and 10 and on the other hand from 0.05 to 2.5 percent by weight of one or more polyols comprising a number of carbon atoms between 5 and 12 and a number of alcohol functions between 5 and 12 and possessing no reducing power.