Abstract:
The present invention provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise a population of nanostructures comprising polythiol ligands with pendant moieties. The polythiol ligand with pendant moieties increase the solubility of the nanostructures in solvents and resins. The present invention also provides nanostructure films comprising the nanostructure compositions and methods of making nanostructure films using the nanostructure compositions.
Abstract:
Disclosed herein are compounds and compositions for nematode treatment. In particular, disclosed are compounds of formula (I), a method of treating a plant or a growing media for a nematode with compounds of formula (II), compositions, and methods of use.
Abstract:
Disclosed herein are compounds and compositions for nematode treatment. In particular, disclosed are compounds of formula (I), a method of treating a plant or a growing media for a nematode with compounds of formula (II), compositions, and methods of use.
Abstract:
The present disclosure relates to HIF-2α inhibitors and methods of making and using them for treating cancer. Certain compounds were potent in HIF-2α scintillation proximity assay, luciferase assay, and VEGF ELISA assay, and led to tumor size reduction and regression in 786-O xenograft bearing mice in vivo.
Abstract:
A heterocyclic compound represented by formula (1) and a field effect transistor having a semiconductor layer comprising the compound. (In the formula, X1 and X2 each independently represents a sulfur atom or a selenium atom, and R1 and R2 each independently represents a C5-16 alkyl.)
Abstract:
The described invention provides small molecule anti-cancer compounds for treating tumors that respond to cholesterol biosynthesis inhibition. The compounds selectively inhibit the cholesterol biosynthetic pathway in tumor-derived cancer cells, but do not affect normally dividing cells.
Abstract:
The present invention includes a method of inhibiting, suppressing or preventing HBV infection in an individual in need thereof, comprising administering to the individual a therapeutically effective amount of at least one compound of the invention.
Abstract:
A method of preparing acrolein from glycerol or glycerine is disclosed. The method includes dehydrating glycerol or glycerine in the presence of a catalyst consisting of at least (a) a mixed oxide of zirconium and at least one metal, said metal being selected from niobium, tantalum and vanadium, or (b) a zirconium oxide and at least one metal oxide, the metal being selected from niobium, tantalum and vanadium, or (c) a silicon oxide and a mixed oxide of zirconium and at least one metal, the metal being selected from tungsten, cerium, manganese, niobium, tantalum, titanium, vanadium and silicon, or (d) a titanium oxide and a mixed oxide of zirconium and at least one metal, said metal being selected from tungsten, cerium, manganese, niobium, tantalum, titanium, vanadium and silicon.
Abstract:
A compound of Formula (I): or a metabolite thereof, or an ester of the compound of Formula (I) or the metabolite thereof, or a pharmaceutically acceptable salt of each thereof, wherein m, n, X1 and X2 are as defined herein, is useful for reducing blood levels of one or more of triglycerides (TG), total cholesterol (TC) and low density lipoprotein (LDL) in human subjects.
Abstract:
The present invention includes a method of inhibiting, suppressing or preventing HBV infection in an individual in need thereof, comprising administering to the individual a therapeutically effective amount of at least one compound of the invention.