Abstract:
A liner for an extrusion press container that includes an elongate body having a longitudinally extending passage therein through which a billet is advanced, the passage having a generally rectangular cross-sectional profile. The liner further comprises at least one first longitudinally extending heating element accommodated by the body adjacent a first side of the passage, and at least one second longitudinally extending heating element accommodated by the body adjacent a second side of the passage. The first and second heating elements are individually controllable for controlling a thermal profile within the liner.
Abstract:
A container for use in a metal extrusion press comprises a mantle having an elongate body comprising an axial bore, an elongate liner accommodated within the axial bore, the liner comprising a longitudinally extending passage through which a billet is advanced, and a fluid channel in thermal communication with the mantle through which a fluid for cooling the container flows.
Abstract:
An extruding press comprising: a die platen element (25) with an extrusion matrix (24) from which an extruded product comes out; a main cylinder (21); longitudinal columns (29) connecting the die platen element (25) to the main cylinder (21); a multiple equipment provided with at least two containers (23′, 23″) for housing the billets, and comprising an external, longitudinally moving, cross element and a transversally moving ram inside said cross element which comprises the containers; means for longitudinally moving the cross element and means for transversally moving the internal ram to make one of the containers (23′, 23″) face the extrusion matrix (24) and make one or more of the other containers be in front of the billet introducing means (30) at the same time as said extrusion of the billet.
Abstract:
A method for forming a miniaturized shaped component. Bulk superplastic material is contacted with a flat rotating surface of a rotating tool to frictionally heat the bulk superplastic material with the bulk superplastic material positioned between the flat rotating surface of the tool and a microfabricated tool die. The bulk superplastic material is forced into the microfabricated die once the bulk superplastic material is heated to a temperature between a glass transition temperature and a crystallization temperature.
Abstract:
An apparatus has first propellers (20) and second propellers (21) alternating with the first propellers. Each propeller has one or more helical biting edges (24a) protruding into a guide passage (28) through which a raw material (W) advances. The biting edges are formed along an inner periphery of each propeller at a predetermined lead angle so as to bite an outer periphery of the raw material (W). The apparatus further has a drive mechanism for rotating the first propellers (20) in a direction opposite to that in which the second propellers (21) are driven. The helical biting edges (24a) are inclined such that the raw material (W) may be forced towards a pressure vessel (2) by all the propellers, notwithstanding the opposite directions in which the first and second propellers ape driven, so that a strong thrust is applied to the raw material, without causing any torsion of the material which is being forced towards the pressure vessel.
Abstract:
The cylindrical liner and surrounding annular support structure of a pressure vessel are segmented axially with the axial segments of the liner being slightly longer than the axial segments of the annular support structure to provide an axial space between opposed annular support structure segments to permit substantially uniform axial compressive stress to be produced along the entire length of said axially segmented cylindrical liner and to seal opposed intermediate annular surfaces of cylindrical liner axial segments; the axial segmentation also provides economies of original cost, repair and replacement costs and ease of assembly and disassembly.