Abstract:
The invention provides a novel class of materials that possess triplet-triplet annihilation upconversion, compositions and methods of preparation and use thereof. The invention also relates to use of such materials and nanoparticles, for example, in stimulus-responsive, in situ delivery of biologically active agents.
Abstract:
A binding moiety (B) for Carbonic Anhydrase IX (CAIX), the binding moiety comprising: The binding moiety is univalent, bivalent, or multivalent. A targeted therapeutic agent may comprise the binding moiety. The invention also includes a method for treating a disease expressing elevated levels of CAIX by administering the targeted therapeutic agent.
Abstract:
The invention relates to a Prodrug activation method, for therapeutics, wherein use is made of abiotic reactive chemical groups that exhibit bio-orthogonal reactivity towards each other. The invention also relates to a Prodrug kit comprising at least one Prodrug and at least one Activator, wherein the Prodrug comprises a Drug and a first Bio-orthogonal Reactive Group (the Trigger), and wherein the Activator comprises a second Bio-orthogonal Reactive Group. The invention also relates to targeted therapeutics used in the above-mentioned method and kit. The invention particularly pertains to antibody-drug conjugates and to bi- and trispecific antibody derivatives.
Abstract:
Supramolecular complexes that target and cleave DNA are provided. The supramolecular complexes include at least one metal-to-ligand charge transfer (MLCT) light absorbing unit, at least one Pt based DNA binding unit, and at least one bridging unit that serves to connect the components. The Pt-based DNA binding unit binds the complex to DNA, and the MLCT unit absorbs light, thereby sensitizing molecular oxygen to produce reactive oxygen species in close proximity to the complex and the bound DNA. The reactive oxygen species cleave the bound DNA.
Abstract:
A broad class of pharmaceutical agents which react directly with electron carriers or with reactive species produced by electron transport to release a pharmacologically active molecule to effect a therapeutic functional change in the organism by a receptor or nonrecepter mediated action.
Abstract:
The disclosure relates to nanoparticle drug conjugates (NDC) that comprise ultrasmall nanoparticles, folate receptor (FR) targeting ligands, and linker-drug conjugates, and methods of making and using them to treat cancer.
Abstract:
The invention relates to a Prodrug activation method, for therapeutics, wherein use is made of abiotic reactive chemical groups that exhibit bio-orthogonal reactivity towards each other. The invention also relates to a Prodrug kit comprising at least one Prodrug and at least one Activator, wherein the Prodrug comprises a Drug and a first Bio-orthogonal Reactive Group (the Trigger), and wherein the Activator comprises a second Bio-orthogonal Reactive Group. The invention also relates to targeted therapeutics used in the above-mentioned method and kit. The invention particularly pertains to antibody-drug conjugates and to bi- and trispecific antibody derivatives.
Abstract:
The invention relates to microbubble complexes for use in methods of sonodynamic therapy which comprise a microbubble attached to or otherwise associated with one or more linking groups, each linking group being bound to at least one sonosensitising agent and at least one chemotherapeutic agent. It further relates to the microbubble complexes themselves and to pharmaceutical compositions which contain them. The invention is particularly suitable for the treatment of deep-sited tumors, in particular pancreatic cancer.
Abstract:
The disclosure relates to nanoparticle drug conjugates (NDC) that comprise ultrasmall nanoparticles, folate receptor (FR) targeting ligands, and linker-drug conjugates, and methods of making and using them to treat cancer.
Abstract:
The disclosure relates to nanoparticle drug conjugates (NDC) that comprise ultrasmall nanoparticles, folate receptor (FR) targeting ligands, and linker-drug conjugates, and methods of making and using them to treat cancer.