Abstract:
A mask-type beauty instrument includes a flexible mask and a controller. The flexible mask includes a first flexible layer, a second flexible layer, a plurality of functional layers located between the first flexible layer and the second flexible layer, and a plurality of electrodes electrically connected with the plurality of functional layers. The functional layer includes a carbon nanotube layer including a plurality of carbon nanotubes uniformly distributed. The flexible mask is electrically coupled with the controller via the plurality of electrodes.
Abstract:
A mask with a sterilization function is provided. The mask comprises two straps, a mask body, a functional layer, a first electrode, a second electrode, and a power inlet. The functional layer, the first electrode and the second electrode located in the mask body. The first electrode and the second electrode are located on a surface of the functional layer and are electrically connected to the power inlet. The first electrode and the second electrode are configured to input a current to the functional layer to heat the functional layer. The functional layer includes a carbon fiber layer.
Abstract:
A mask-type beauty instrument includes a flexible mask and a controller. The flexible mask includes a first flexible layer, a second flexible layer, a plurality of functional layers located between the first flexible layer and the second flexible layer, and a plurality of electrodes electrically connected with the plurality of functional layers. The functional layer includes a carbon nanotube layer including a plurality of carbon nanotubes uniformly distributed. The flexible mask is electrically coupled with the controller via the plurality of electrodes.
Abstract:
A method for using beauty instrument with mask includes steps of: providing a beauty instrument with mask; applying the flexible mask of the beauty instrument with mask on a user's face; and turning on the controller and selecting a function button from the plurality of function buttons on the controller, inputting a current to the at least one heating layer in the flexible mask, and heating the at least one heating layer. The beauty instrument with mask includes a flexible mask and a controller. The controller is electrically coupled with the flexible mask.
Abstract:
A method for making a carbon nanotube film includes providing an original carbon nanotube film and an angle control unit. The original carbon nanotube film includes a plurality of carbon nanotubes joined end-to-end by van der Waals force, and the angle control unit defines a through hole. A first end of the original carbon nanotube film is converged to form a carbon nanotube wire structure and a carbon nanotube triangle structure having an open angle adjacent to the carbon nanotube wire structure. The carbon nanotube wire structure is passed through the through hole of the angle control unit. The carbon nanotube triangle structure is cut. The carbon nanotube film is also provided.
Abstract:
A wire cutting electrode which includes a carbon nanotube composite wire, a tensile strain rate of the carbon nanotube composite wire being less than or equal to 3%. The carbon nanotube composite wire includes a carbon nanotube wire and a metal layer. The carbon nanotube wire consists of a plurality of carbon nanotubes oriented around a longitudinal axis of the carbon nanotube composite wire. A twist of the carbon nanotube wire ranges from 10 r/cm to 300 r/cm. A diameter of the carbon nanotube wire ranges from 1 micron to 30 microns. The metal layer is coated on an outer surface of the carbon nanotube wire, and a thickness of the metal layer ranges from 1 micron to 5 microns. A wire cutting device using the wire cutting electrode is also provided.
Abstract:
A conductive mesh for a touch panel consists of a plurality of carbon nanotube composite wires. The carbon nanotube composite wire comprises a carbon nanotube wire and a metal layer. The carbon nanotube wire comprises a plurality of carbon nanotubes spirally arranged along an axial direction of the carbon nanotube wire. A touch panel using the conductive mesh is also provided.
Abstract:
A method for making carbon nanotube composite film is provided. An original carbon nanotube film includes carbon nanotubes joined end to end by van der Waals attractive force. The carbon nanotubes substantially extend along a first direction. A patterned carbon nanotube film is formed by patterning the original carbon nanotube film to define at least one row of through holes arranged in the original carbon nanotube film along the first direction. Each row of through holes includes at least two spaced through holes. The patterned carbon nanotube film is treated with a polymer solution. The patterned carbon nanotube film is shrunk into the carbon nanotube composite film.
Abstract:
A display device includes a display element and a touch panel including a first electrode plate and a second electrode plate. The first electrode plate includes a first conductive layer and two first electrodes electrically connected to the first conductive layer. The second electrode plate includes a second conductive layer and two second electrodes electrically connected to the second conductive layer. The display element includes a plurality of pixels arranged in rows and columns along a first direction and a second direction. At least one of the first conductive layer and the second conductive layer includes a plurality of carbon nanotubes arranged primarily along the same aligned direction. The aligned direction and the second direction define an angle ranging from above 0° to less than or equal to 90°.
Abstract:
A carbon nanotube film supporting structure is provided. The carbon nanotube film supporting structure is used for supporting a carbon nanotube film structure. The carbon nanotube film supporting structure includes a body and a number of voids. The body has a surface defining a support region. The voids are defined in the support region. A void ratio of the support region is greater than or equal to 80%. The present disclosure also provides a method for using the carbon nanotube film supporting structure.