Abstract:
A finger-mounted implement including a kinesthetic sensor, at least one tactile sensor, and means for securing the kinesthetic sensor and the at least one tactile sensor to a fingertip. The tactile sensor may be a thin-film force transducer, a piezoelectric accelerometer, or a combination thereof. An artificial fingernail may be connected to the accelerometer. The kinesthetic sensor may include a magnetic transducer and may sense an X-Y-Z position and an angular orientation of a fingertip to which the kinesthetic sensor is secured. The securing means may include at least one means selected from the group consisting of adhesive tape, an elastically deformable cover, and detachable adhesive. The implement can be further connected to a computer processing system for, amongst other things, the virtual representation of sensed objects. The implement can also be used as part of a method of haptic sensing of objects.
Abstract:
The present invention pertains to a package module of a battery protection circuit, and the package module of the battery protection circuit according to the present invention comprises: a first internal connection terminal area and a second internal connection terminal area, which are respectively disposed at both edge parts thereof, and in which first and second internal connection terminals connected to a battery can provided with a bare cell are respectively disposed; an external connection terminal area, which is adjacent to the first internal connection terminal area, and in which a plurality of external connection terminals are disposed; and a protection circuit area comprising a device area in which a plurality of passive devices forming the battery protection circuit are disposed and a chip area, which is adjacent to the device area, and in which a protection IC and a dual FET chip forming the battery protection circuit are disposed, are disposed between the external connection terminal area and the second internal connection terminal area, and has a packaged structure to expose the plurality of external connection terminals on the upper surface thereof and expose the first internal connection terminal and the second internal connection terminal on the lower surface thereof. According to the present invention, a manufacturing process is minimized when compared with existing methods requiring a separate module manufacturing process, and a battery pack is easily formed and is able to be miniaturized and integrated.
Abstract:
A transmission apparatus and a method thereof in a mobile terminal are provided. More particularly, an apparatus and a method for securing a space of a mobile terminal and reducing manufacturing costs by integrating power amplifying units into one module in the mobile terminal that supports a multi-mode are provided. The power amplifier of a mobile terminal includes a first amplifying unit and a second amplifying unit. The first amplifying unit defines a frequency of a GSM quad band as a low frequency band and a high frequency band, and then amplifies a signal of the low frequency band of the GSM quad band. The second amplifying unit amplifies a signal of the high frequency band of the GSM quad band and a signal of a TD-SCDMA band.
Abstract:
A broadband wireless communication system is provided. An apparatus for an information server (IS) comprises an event module for determining whether updating the network information of at least one access network (AN) is needed, a generator module for generating at least one Information_Get_Request packet for requesting the network information of the at least one AN when the updating is needed, a communication module for transmitting at least one Information_Get_Request packet to the at least one AN, and a database (DB) module for storing network information within an Information_Get_Response packet received from the at least one AN.
Abstract:
An apparatus for measuring a semiconductor device is provided. The apparatus includes a beam emitter configured to irradiate an electron beam onto a sample having the entire region composed of a critical dimension (CD) region, which is formed by etching or development, and a normal region connected to the CD region, and an analyzer electrically connected to the beam emitter, and configured to select and set a wavelength range of a region in which a difference in reflectance between the CD region and the normal region occurs, after obtaining reflectance from the electron beam reflected by a surface of the sample according to the wavelength of the electron beam. A method of measuring a semiconductor device using the measuring apparatus is also provided. Therefore, it is possible to minimize a change in reflectance due to the thickness and properties of the semiconductor device, and set a wavelength range to monitor a specific wavelength, thereby accurately measuring and analyzing a CD value of a measurement part of the semiconductor device.
Abstract:
In a method of aligning a substrate, a first alignment mark in a single shot region on the substrate may be identified. A second alignment mark in the single shot region may be selectively identified in accordance with the identification of the first alignment mark. The substrate may then be aligned using identified any one of the first alignment mark and the second alignment mark. Thus, although the substrate may be accurately aligned, the accurately aligned substrate may not be determined to be misaligned.
Abstract:
In a method of aligning a substrate, a first alignment mark and a second alignment mark in a first shot region on the substrate may be sequentially identified. The substrate may be primarily aligned using identified any one of the first alignment mark and the second alignment mark. A used alignment mark and an unused alignment mark during the primary alignment process of the first alignment mark and the second alignment mark in a second shot region on the substrate may be sequentially identified. The substrate may be secondarily aligned using identified any one of the used alignment mark and the unused alignment mark during the primary alignment process. Thus, a time for identifying the alignment mark may be reduced.
Abstract:
Vertical handover apparatus and method in a wireless communication system are provided. The method includes examining whether there exists an accessible target network while communicating with a serving network; when there exists the accessible target network, linking up to the target network; changing a communication state to an idle mode by de-registering the linked target network; and performing a network re-entry to the target network in a vertical handover to the target network. When the terminal can execute the vertical handover without the seamless service support and reduce the handover delay.
Abstract:
Disclosed is an Ethernet-IEEE 1394 repeater apparatus as a network transmission equipment for connecting between networks having the same or different protocols is disclosed. The apparatus includes a first protocol physical element for performing a modulation/demodulation process of a first protocol data; a second protocol physical element for performing a modulation/demodulation process of a second protocol data; an output interface for outputting the data through an output transmission, media; a first switch for switching the data input to one of the first protocol physical element and the second protocol physical element; a second switch, tuned with the first switch, for switching an output path to one of the first protocol physical element and the second protocol physical element, the output path being connected to the output interface; and a control unit for receiving a protocol information of data sent from one of the first protocol physical element and the second protocol physical element to control the first switch and the second switch based on the received protocol information, the one being selectively connected based on the current switching condition.
Abstract:
In a method of manufacturing a floating gate of a non-volatile semiconductor memory, a pattern is formed on a substrate to have an opening that exposes a portion of the substrate. A first preliminary polysilicon layer is formed on the pattern and the exposed portion of the substrate to substantially fill the opening. A first polysilicon layer is formed by partially etching the first preliminary polysilicon layer until a first void formed in the first preliminary polysilicon layer is exposed. A second polysilicon layer is formed on the first polysilicon layer.