Abstract:
A high electron mobility transistor (HEMT) device including the following components is provided. A gate electrode is located on a barrier layer. A source electrode is located on the first side of the gate electrode. A drain electrode is located on the second side of the gate. A source field plate is connected to the source electrode. The source field plate includes first, second, and third field plate portions. The first field plate portion is connected to the source electrode and is located on the first side of the gate electrode. The second field plate portion is located on the second side of the gate electrode. The third field plate portion is connected to the end of the first field plate portion and the end of the second field plate portion. The source field plate has a first opening located directly above the gate electrode.
Abstract:
A transistor structure is provided in the present invention. The transistor structure includes: a substrate comprising a N-type well, a gate disposed on the N-type well, a spacer disposed on the gate, a first lightly doped region in the substrate below the spacer, a P-type source/drain region disposed in the substrate at two sides of the gate, a silicon cap layer covering the P-type source/drain region and the first lightly doped region and a silicide layer disposed on the silicon cap layer, and covering only a portion of the silicon cap layer.
Abstract:
A transistor structure is provided in the present invention. The transistor structure includes: a substrate comprising a N-type well, a gate disposed on the N-type well, a spacer disposed on the gate, a first lightly doped region in the substrate below the spacer, a P-type source/drain region disposed in the substrate at two sides of the gate, a silicon cap layer covering the P-type source/drain region and the first lightly doped region and a silicide layer disposed on the silicon cap layer, and covering only a portion of the silicon cap layer.
Abstract:
A high electron mobility transistor (HEMT) device including the following components is provided. A gate electrode is located on a barrier layer. A source electrode is located on the first side of the gate electrode. A drain electrode is located on the second side of the gate. A source field plate is connected to the source electrode. The source field plate includes first, second, and third field plate portions. The first field plate portion is connected to the source electrode and is located on the first side of the gate electrode. The second field plate portion is located on the second side of the gate electrode. The third field plate portion is connected to the end of the first field plate portion and the end of the second field plate portion. The source field plate has a first opening located directly above the gate electrode.
Abstract:
A method of fabricating an embedded nonvolatile memory device is disclosed. A semiconductor substrate having thereon a fin body protruding from an isolation layer is provided. A charge storage layer crossing the fin body is formed. An inter-layer dielectric layer is deposited on the semiconductor substrate. The inter-layer dielectric layer is polished to expose a top surface of the charge storage layer. The charge storage layer is then recess etched and cut into separate charge storage structures. A high-k dielectric layer is formed on the charge storage structures. A word line is formed on the high-k dielectric layer.
Abstract:
A method for manufacturing a metal gate structure includes providing a substrate having a high-K gate dielectric layer and a bottom barrier layer sequentially formed thereon, forming a work function metal layer on the substrate, and performing an anneal treatment to the work function metal layer in-situ.
Abstract:
A method of fabricating a semiconductor device with fin-shaped structures includes respectively forming first fin-shaped structures in a first region and a second region of a semiconductor substrate, depositing a dielectric layer to completely cover the first fin-shaped structures, removing the first fin-shaped structures in the second region so as to form trenches in the dielectric layer, and performing an in-situ doping epitaxial growth process so as to respectively form second fin-shaped structures in the trenches.