Abstract:
An aperture is configured to be disposed between an illumination source and a semiconductor substrate in a photolithography system. The aperture includes a light-transmission portion with a non-planar thickness profile to compensate the discrepancy of wave-fronts of the light beams of different orders.
Abstract:
A method for manufacturing a semiconductor device includes providing a substrate having a mask layer formed thereon, providing a first photomask having a first layout pattern and a second photomask having a second layout pattern, the first layout pattern including a plurality of active area portions and at least a neck portion connecting two adjacent active area portions, transferring the first layout pattern from the first photomask to the mask layer to form a plurality of active area patterns and at least a neck pattern connecting two adjacent active area patterns in the mask layer, and transferring the second layout pattern from the second photomask to the mask layer to remove the neck pattern to form a patterned mask. The patterned mask includes the active area patterns. A slot is at least formed between the two adjacent active area patterns.
Abstract:
A calculation method of optical proximity correction includes providing at least a feature pattern to a computer system. At least a first template and a second template are defined so that portions of the feature pattern are located in the first template and the rest of the feature pattern is located in the second template. The first template and the second template have a common boundary. Afterwards, a first calculation zone is defined to overlap an entire first template and portions of the feature pattern out of the first template. Edges of the feature pattern within the first calculation zone are then fragmented from the common boundary towards two ends of the feature pattern so as to generate at least two first beginning segments respectively at two sides of the common boundary. Finally, positions of the first beginning segments are adjusted so as to generate first adjusted segments.
Abstract:
The present invention provides a pattern verifying method. First, a target pattern is decomposed into a first pattern and a second pattern. A first OPC process is performed for the first pattern to form a first revised pattern, and a second OPC process is performed for the second pattern to form a second revised pattern. An inspection process is performed, wherein the inspection process comprises an after mask inspection (AMI) process, which comprises considering the target pattern, the first pattern and the second pattern.
Abstract:
A method for manufacturing a semiconductor device includes providing a substrate having a mask layer formed thereon, providing a first photomask having a first layout pattern and a second photomask having a second layout pattern, the first layout pattern including a plurality of active area portions and at least a neck portion connecting two adjacent active area portions, transferring the first layout pattern from the first photomask to the mask layer to form a plurality of active area patterns and at least a neck pattern connecting two adjacent active area patterns in the mask layer, and transferring the second layout pattern from the second photomask to the mask layer to remove the neck pattern to form a patterned mask. The patterned mask includes the active area patterns. A slot is at least formed between the two adjacent active area patterns.
Abstract:
The present invention provides a pattern verifying method. First, a target pattern is decomposed into a first pattern and a second pattern. A first OPC process is performed for the first pattern to form a first revised pattern, and a second OPC process is performed for the second pattern to form a second revised pattern. An inspection process is performed, wherein the inspection process comprises an after mask inspection (AMI) process, which comprises considering the target pattern, the first pattern and the second pattern.
Abstract:
A mask set for double exposure process and method of using said mask set. The mask set is provided with a first mask pattern having a first base and a plurality of first teeth and protruding portions, and a second mask pattern having a second base and a plurality of second teeth, wherein the second base may at least partially overlap the first base such that each of the protruding portions at least partially overlaps one of the second teeth.
Abstract:
A method of optical proximity correction (OPC) includes the following steps. A layout pattern is provided to a computer system, and the layout pattern is classified into at least a first sub-layout pattern and at least a second sub-layout pattern. Then, at least an OPC calculation is performed respectively on the first sub-layout pattern and the second sub-layout pattern to form a corrected first sub-layout pattern and a corrected second sub-layout pattern. The corrected first sub-layout pattern/the corrected second sub-layout pattern and the layout pattern are compared to select a part of the corrected first sub-layout pattern/the corrected second sub-layout pattern as a first selected pattern/the second selected pattern, and the first selected pattern/the second selected pattern is further altered to modify the corrected first sub-layout pattern/the corrected second sub-layout pattern as a third sub-layout pattern/a fourth sub-layout pattern.
Abstract:
A method for making a photomask layout is provided. A first graphic data of a photomask is provided, wherein the first graphic data includes a first line with a first line end target, a second line with a second line end target and a hole, the first line is aligned with the second line, and the first line, the second line and the hole partially overlap with each other. Thereafter, a retarget step is performed to the first graphic data to obtain a second graphic data, wherein the retarget step includes moving the first line end target and the second line end target in opposite directions away from each other.
Abstract:
A method of correcting a layout pattern is provided in the present invention. The method includes the following steps. A layout pattern including at least two adjacent rectangular sub patterns is provided. The layout pattern is then input into a computer system. An optical proximity correction including a bevel correction is then performed. The bevel correction includes forming a bevel at a corner of at least one of the two adjacent rectangular sub patterns, wherein the bevel is formed by chopping the corner, and moving the bevel toward an interaction of two neighboring segments of the bevel if a distance between the bevel and the other rectangular sub pattern is larger than a minimum value. The angle between a surface of the bevel and a surface of the rectangular sub pattern is not rectangular. The layout pattern is output to a mask after the optical proximity correction.