Abstract:
A method for forming a semiconductor package is disclosed herein. The method includes forming a package substrate having a first major surface and a second major surface opposite to the first major surface. The package substrate includes a recess region below the first major surface defined with a die region and a non-die region surrounding the die region. A semiconductor die is disposed in the die region within the recess region. A dam structure is disposed within the recess region. The dam structure surrounds the semiconductor die and extends upwardly to a height below the first major surface of the package substrate. The method also includes dispensing a liquid encapsulant material into the recess region. The liquid encapsulant material is surrounded by the dam structure and extends upwardly to a height below the height of the dam structure. A package lid is attached to the package substrate.
Abstract:
Semiconductor packages and methods for forming a semiconductor package are disclosed. The method includes providing a wafer having first and second major surfaces. The wafer is prepared with a plurality of dies and a plurality of external electrical contacts disposed on the first major surface of the wafer. The method includes processing the wafer. Processing the wafer includes separating the wafer into a plurality of individual dies. An individual die includes first and second major surfaces and first and second sidewalls, and the external electrical contacts are formed on the first major surface of the die. An encapsulant material is formed. The encapsulant material covers at least a portion of the first and second sidewalls of the die.
Abstract:
Semiconductor packages and methods for forming a semiconductor package are disclosed. The method includes providing a wafer having first and second major surfaces. The wafer is prepared with a plurality of dies and a plurality of external electrical contacts disposed on the first major surface of the wafer. The method includes processing the wafer. Processing the wafer includes separating the wafer into a plurality of individual dies. An individual die includes first and second major surfaces and first and second sidewalls, and the external electrical contacts are formed on the first major surface of the die. An encapsulant material is formed. The encapsulant material covers at least a portion of the first and second sidewalls of the die.
Abstract:
An improved method for forming a semiconductor package is disclosed herein. The method includes forming a multi-layer package substrate having a first major surface and a second major surface opposite to the first major surface. The package substrate comprises a recess region. A semiconductor die is attached to the die region within the recess region. A dam structure is formed within the recess region. The dam structure surrounds the semiconductor die and extends upward to a height below the first major surface of the package substrate. A liquid encapsulant material is dispensed into the recess region. The liquid encapsulant material is surrounded by the dam structure. The liquid encapsulant extends upwardly to a height below the height of the dam structure. A package lid is attached to the package substrate.
Abstract:
Semiconductor packages and methods for forming a semiconductor package are disclosed. The method includes providing a wafer having first and second major surfaces. The wafer is prepared with a plurality of dies and a plurality of external electrical contacts disposed on the first major surface of the wafer. The method includes processing the wafer. Processing the wafer includes separating the wafer into a plurality of individual dies. An individual die includes first and second major surfaces and first and second sidewalls, and the external electrical contacts are formed on the first major surface of the die. An encapsulant material is formed. The encapsulant material covers at least a portion of the first and second sidewalls of the die.