Abstract:
A holding structure holds a reflecting mirror. The holding structure includes a reflecting mirror bracket holding the reflecting mirror; a protrusion disposed on the reflecting mirror; a protrusion supporting part disposed on the reflecting mirror bracket and supporting the protrusion; and a spacer disposed between the protrusion supporting part and the reflecting mirror bracket.
Abstract:
An illumination optical system is provided that is configured to guide light emitted from a light source to an image generation unit that is arranged to be movable in a direction perpendicular to incoming light and is configured to generate an image by reflecting the incoming light. The illumination optical system includes a first lens that is arranged to be movable in a direction perpendicular to an optical axis of the first lens, a second lens that is arranged to be movable in a direction that changes a face-to-face distance between the first lens and the second lens, and a lens position control unit configured to displace the first lens and the second lens.
Abstract:
A cooling device includes a heat dissipating unit that is in contact with an object to be cooled and dissipates heat, and an air blowing unit that takes therein air and blows the air to the heat dissipating unit. The heat dissipating unit includes a first stage portion and a second stage portion that have a difference in level therebetween. The air blowing unit includes a first inlet port that takes therein air from outside, and an outlet port that exhausts the taken-in air. The first inlet port faces the first stage portion, and the outlet port faces the second stage portion.
Abstract:
An image projection apparatus includes: a grid portion provided on a housing of the apparatus and having a plurality of grids through which air flows in or out of the apparatus. The grid portion includes an edge portion of the grid portion, and a central portion of the grid portion, having a thickness thicker than a thickness of the edge portion of the grid portion.
Abstract:
A light source housing to which a light source lamp having a light emission tube and a reflector is attached includes a pair of flow paths bifurcating onto upper and lower sides of the light emission tube from an air intake port for introducing a cooling air; a flow path open and close unit that slides in a direction of the gravitational force so as to open the flow path on the upper side of the light emission tube and close the flow path on the lower side of the light emission tube; and an air outtake port that outtakes the cooling air introduced into the reflector from the flow path on the upper side of the light emission tube to an outside of the reflector.
Abstract:
Disclosed is a cooling device including a blower including an exhaust port; and a radiator including heat radiation fins, wherein the heat radiation fins include a first heat dissipation area and a second heat dissipation area, wherein a first surface area of the heat radiation fins disposed in the first heat dissipation area is greater than that of the heat radiation fins disposed in the second heat dissipation area, wherein the exhaust port of the air blowing part includes first and second exhaust areas for exhausting cooling air, wherein an amount of the cooling air exhausted from the second exhaust area is greater than that of the first exhaust area, and wherein the first heat dissipation area is disposed in the first exhaust area, and the second heat dissipation area is disposed in the second exhaust area.
Abstract:
According to an embodiment of the invention, an image projection apparatus includes: a light source device; a first circuit board including an image display device configured to form an image using light, a connector, and an electrically conductive portion near the connector; a retaining member made of metal; an optical illuminating unit held by the retaining member and configured to guide the light to the image display device; an optical projecting unit configured to project the image onto a projection surface; a second circuit board configured to be electrically connected to the connector; a metal plate fixed and electrically connected to the retaining member; and an elastic metal member arranged on the metal plate. The first circuit board is fixed to the retaining member. The elastic metal member is in contact with the electrically conductive portion. The second circuit board is fixed and electrically connected to the metal plate.
Abstract:
An image projection apparatus includes a light source unit including a light source detachable from a main body, an image forming part to form an image with a light from the light source, a projection optical system to project the image, an openable cover to open and close an opening formed for attaching and detaching the light source unit to and from the main body, an abutting member on which the light source unit abuts when the light source unit is attached to the main body, and a pressing member to press the light source unit to the abutting member, in conjunction with a fix operation of the openable cover to the main body.
Abstract:
An image projection apparatus includes a light source, light from which is used to form an image to be projected, a first flow path, a control unit configured to control a light emission from the light source, an electrical power stabilizing unit configured to stabilize an electrical power to be supplied to the light source, and an electrical power source unit configured to supply the electrical power to at least one of the control unit and the electrical power stabilizing unit. One or both of the electrical power source unit and the electrical power stabilizing unit is/are divided into a plurality of boards. The light source is arranged on a normal line of a surface of any of the plurality of boards. The plurality of boards configure surfaces of the first flow path except a surface nearest to the light source.
Abstract:
In a projector that includes a light source, an image forming unit, a projection optical unit, and a case to contain the light source, the image forming unit, the projection optical unit, and the power supply, takes outside air in through a first intake duct provided on the case, cools the power supply by circulating the taken outside air to the power supply circumventing the projection optical unit, and exhausts the air after cooling through an exhaust vent provided on the case. A second intake duct is provided nearby the power supply compared to the first intake duct, and the amount of outside air drawn into the case through the second intake duct is larger than the amount of outside air drawn into the case through the first intake duct.