Abstract:
Mixed oxide powder consisting of particles with the components zirconium dioxide, aluminium oxide and at least a third component selected from the group including yttrium oxide, magnesium oxide or calcium oxide, wherein mixed oxide powder has an aluminium oxide content 0.01 to 10 wt. % and is homogeneously distributed in the mixed oxide particles, the content of aluminium oxide, zirconium dioxide and yttrium oxide is at least 99.5 wt. %, based on the total quantity of the powder, and the BET surface area is 20 to 80 m2/g. It is obtained by atomising a solution containing at least one starting compound for each of aluminium oxide, zirconium dioxide and the third component, allowing the atomised solution to react with oxygen in a reaction chamber at a reaction temperature 700 to 15000° C., cooling the hot gases and the solid products and then separating the solid product from the gases. It can be used as a dental material.
Abstract:
Functionalized magnetic core-shell particles which are present predominantly in the form of isolated, essentially spherical individual particles, the core of which consists essentially of one or more magnetic iron oxides, the shell of which consists essentially of impervious, amorphous silicon dioxide, and the functionalization of which consists of amino or epoxy group units on the surface of the particles, and which additionally have a mean particle diameter d50 such that 2
Abstract:
Hydrophobized silicon-iron mixed oxide powder, characterized in that it has the following physicochemical characteristics: BET surface area 20 to 75 mVg; Carbon content 0.5 to 10% by weight; Tamped density 150 to 600 g/l; Chlorine content 0.1 to 3.0%; Drying loss 0.1 to 4% by weight; DVS isotherm (60%) 0.5 to 1.5% by weight; Heating rate (Is, 10%) 50 to 550° C./s; 90% range (number) 5 to 50 nm; 90% range (weight) 5 to 150 nm; Overall range 2 to 200 nm, is prepared by treating a silicon-iron mixed oxide powder with the surface modifier either in spray form or in vapour form, and then heat treating it. The surface-modified oxidic particles can be used as a filler in adhesives. Further fields of use are use for data carriers, as a contrast agent in imaging processes, for biochemical separation and analysis processes, for medical applications, as an abrasive, as a catalyst or as a catalyst support, as a thickener, for thermal insulation, as a dispersing aid, as a flow aid and in ferrofluids.
Abstract:
Hydrophobic zinc oxide powder in the form of partially or completely coated aggregates of zinc oxide primary particles having a carbon content of from 0.4 to 1.5% by weight, based on the hydrophobic zinc oxide powder, and a BET surface area of from 25 to 100 m2/g, where the coated aggregates are present to 0 to
Abstract:
Surface-modified zinc-silicon oxide particles which consist of a core, a first coating layer surrounding the core, and a second coating layer surrounding the first coating layer, where the core is crystalline and consists of aggregated zinc oxide primary particles having a primary particle diameter of from 10 to 75 nm, the first coating layer consists of one or more compounds containing the elements Zn, Si and O, the second coating layer comprises linear and/or branched alkylsilyl groups having 1 to 20 carbon atoms bonded chemically to the first coating layer, which have an average aggregate area of less than 40 000 nm2 and an average aggregate diameter (ECD) of less than 300 nm, a carbon content of from 0.4 to 1.5% by weight and a BET surface area of from 10 to 60 m2/g.
Abstract:
Surface-modified superparamagnetic oxidic particles, characterized by the following physicochemical characteristics: BET surface area 20 to 75 m2/g; Carbon content 0.5 to 6.0% by weight; Tamped density 150 to 500 g/l; Chlorine content 50 to 1000 ppm; Drying loss 0.1 to 4.0% by weight are prepared by contacting the oxides with the surface modifier either by spraying or vapour deposition and then heat-treating them. The surface-modified oxidic particles can be used as a filler in adhesives. Further fields of application are use for data carriers, as a contrast agent in imaging processes, for biochemical separation and analysis processes, for medical applications, as an abrasive, as a catalyst or as a catalyst support, as a thickener, for thermal insulation, as a dispersing assistant, as a flow assistant and in ferrofluids.
Abstract:
Surface-modified, structurally modified fumed silicas Surface-modified, structurally modified fumed silicas are surface-modified with N-containing silicon compounds. They are used as fillers in resins and adhesives.
Abstract:
The invention relates to emulsifier systems comprising organomodified siloxane block copolymers, their use, in particular the preparation of cosmetic, dermatological or pharmaceutical formulations, and of care and cleaning compositions, and also the products themselves prepared with the help of emulsifier systems.
Abstract:
RTV two-component silicone rubber which contains structurally modified hydrophobic fumed silicas which have vinyl groups fixed on the surface, further hydrophobic groups, such as trimethylsilyl and/or dimethylsilyl and/or monomethylsilyl groups, additionally being fixed on the surface.