Abstract:
A method for preparing methacrolein from t-butanol, specifically a method for preparing methacrolein by using t-butanol as a starting material, is disclosed, comprising passing the starting material through a fixed bed reactor filled with catalyst, wherein the fixed bed reactor is divided to n reaction zones from the inlet of the starting material to the outlet of the starting material and each zone is filled with catalysts of different catalytic activities; wherein the catalytic activity of the catalyst in the first reaction zone is higher than the catalytic activity of the catalyst in the second reaction zone, and the catalytic activity of the catalyst is gradually increased from the second reaction zone to the last reaction zone; and n is an integer between 3 to 10.
Abstract:
A (methyl)acrolein oxidation catalyst and a preparation method therefor-in which the catalyst has a composition represented by the following formula: x(Mo12PaCsbVcDeOf)+tC/yZ in which Mo12PaCSbVcDeOf is a heteropolyacid salt main catalyst; C is a nano carbon fiber additive, and Z is a carrier thermal conduction diluent; Mo, P, Cs, V, and O represent the elements of molybdenum, phosphorus, cesium, vanadium, and oxygen, respectively; D represents at least one element selected from the group consisting of copper, iron, magnesium, manganese, antimony, zinc, tungsten, silicon, nickel, and palladium; a, b, c, e, and f represent the atomic ratio of each element, a=0.1-3, b=0.01-3, c=0.01-5, e=0.01-2, and f being the atomic ratio of oxygen required to satisfy the valence of each of the described components; x and y represent the weights of the main catalyst and the carrier thermal conduction diluent Z, and y/x=11.1-50%; and t represents the weight of the nano carbon fiber, and t/x=3-10%.
Abstract:
Disclosed is a method for preparing a heteropolyacid salt catalyst, comprising dissolving the lead compounds for each element to prepare a suspension and dispersion slurry of catalyst precursor, which comprises all of the catalyst components; drying the catalyst precursor, mixing them with an organic compound, molding, and calcining to produce the catalyst.
Abstract:
Disclosed are a ferrite catalyst, its preparation method and use. The catalyst has a formula of FeAaDbOc, wherein A is Mg atom, Zn atom or a mixture of these two atoms in any ratio; D is one or more atoms elected from the group consisting of Ni, Co, Mn, Ca, Mo or V; a=0.01˜0.6; b=0˜0.30; c is a number satisfying the valence. The catalyst is prepared by a method comprising mixing the metal oxide precursors according to the chemical ratios and grinding by ball milling to obtain the ferrite catalyst. The catalyst exhibits excellent activity and selectivity when used in a reaction for preparing butadiene by oxidative dehydrogenation of butene. The preparation of the catalyst is simple, controllable and well repeatable, with reduced waste water and waste gas during preparation.
Abstract translation:公开了一种铁氧体催化剂及其制备方法和用途。 催化剂具有FeAaDbOc的式,其中A是Mg原子,Zn原子或这两个原子的任何比例的混合物; D是从由Ni,Co,Mn,Ca,Mo或V组成的组中选出的一个或多个原子; a = 0.01〜0.6; b = 0〜0.30; c是满足价态的数。 该催化剂通过包括根据化学比混合金属氧化物前体并通过球磨研磨获得铁氧体催化剂的方法制备。 当用于通过丁烯的氧化脱氢制备丁二烯的反应中时,催化剂表现出优异的活性和选择性。 催化剂的制备简单,可控,重复性好,在制备过程中减少废水和废气。
Abstract:
Disclosed are a molybdenum based composite oxide catalyst, its preparation method and use. The catalyst has the following general formula: BiMoxMyNzOa; wherein M is one of V, Cr, Mn, Fe, Co, Ni and Cu, or a mixture of two or more of V, Cr, Mn, Fe, Co, Ni and Cu in any ratio; N is one of Na, K, Cs, Ca and Ba, or a mixture of two or more of Na, K, Cs, Ca and Ba in any ratio; x=0.5˜20; y=0.05˜20; z=0.0˜15; a is a number satisfying the valance of each atom. The catalyst is prepared by the following method: firstly mixing a certain amount of the lead metal oxides according to the chemical proportion and then grinding the mixture with high-energy ball milling for a period of time to obtain the molybdenum based composite oxide catalyst. The catalyst exhibits excellent performance when using for preparation of butadiene by oxidative dehydrogenation of butene, and the preparation process is simple, controllable, and repeatable. Waste water or waste gas that is difficult to be treated is not produced during preparation.
Abstract translation:公开了一种钼基复合氧化物催化剂及其制备方法和用途。 催化剂具有以下通式:BiMoxMyNaOa; 其中M为V,Cr,Mn,Fe,Co,Ni和Cu中的一种,或V,Cr,Mn,Fe,Co,Ni和Cu中的两种或多种的任何比例的混合物; N是Na,K,Cs,Ca和Ba中的一种,或Na,K,Cs,Ca和Ba中的两种或多种的任何比例的混合物; x = 0.5〜20; y = 0.05〜20; z = 0.0〜15; a是满足每个原子价值的数。 催化剂通过以下方法制备:首先根据化学成分混合一定量的铅金属氧化物,然后用高能球磨研磨混合物一段时间,得到钼基复合氧化物催化剂。 当通过丁烯的氧化脱氢制备丁二烯时,催化剂表现出优异的性能,制备过程简单,可控,可重复。 在制备过程中不会产生难以处理的废水或废气。
Abstract:
A reactor temperature measurement system includes a Fiber Bragg Grating sensor array arranged in a body of the reactor for monitoring temperatures at multiple positions in an axial direction of the body to obtain temperature sensing optical signals; and a fiber grating demodulator, connected to the Fiber Bragg Grating sensor array, and used to demodulate the temperature sensing optical signals. A method for preparing a Fiber Bragg Grating includes preparing a Fiber Bragg Grating by using a single-mode fiber and annealing the Fiber Bragg Grating, which includes heating the Fiber Bragg Grating to a temperature above 400° C. and maintaining for 100 to 200 hours.
Abstract:
Disclosed is a method for preparing a heteropolyacid salt catalyst, comprising dissolving the lead compounds for each element to prepare a suspension and dispersion slurry of catalyst precursor, which comprises all of the catalyst components; drying the catalyst precursor, mixing them with an organic compound, molding, and calcining to produce the catalyst.
Abstract:
Disclosed are a molybdenum based composite oxide catalyst, its preparation method and use. The catalyst has the following general formula: BiMoxMyNzOa; wherein M is one of V, Cr, Mn, Fe, Co, Ni and Cu, or a mixture of two or more of V, Cr, Mn, Fe, Co, Ni and Cu in any ratio; N is one of Na, K, Cs, Ca and Ba, or a mixture of two or more of Na, K, Cs, Ca and Ba in any ratio; x=0.5˜20; y=0.05˜20; z=0.01˜5; a is a number satisfying the valance of each atom. The catalyst is prepared by the following method: firstly mixing a certain amount of the lead metal oxides according to the chemical proportion and then grinding the mixture with high-energy ball milling for a period of time to obtain the molybdenum based composite oxide catalyst. The catalyst exhibits excellent performance when using for preparation of butadiene by oxidative dehydrogenation of butene, and the preparation process is simple, controllable, and repeatable. Waste water or waste gas that is difficult to be treated is not produced during preparation.
Abstract:
A method for preparing methacrolein from t-butanol, specifically a method for preparing methacrolein by using t-butanol as a starting material, is disclosed, comprising passing the starting material through a fixed bed reactor filled with catalyst, wherein the fixed bed reactor is divided to n reaction zones from the inlet of the starting material to the outlet of the starting material and each zone is filled with catalysts of different catalytic activities; wherein the catalytic activity of the catalyst in the first reaction zone is higher than the catalytic activity of the catalyst in the second reaction zone, and the catalytic activity of the catalyst is gradually increased from the second reaction zone to the last reaction zone; and n is an integer between 3 to 10.