Abstract:
A digital RF receiver does not use a separate receiver according to a mode and a band for multi-mode reception, MIMO reception, and bandwidth extension reception, and changes only setting variables in a single receiver structure so as to implement multi-mode reception, MIMO reception, bandwidth extension reception, and/or simultaneous multi-mode operation, such that complexity of the receiver, development cost, and power consumption can be reduced.
Abstract:
The present invention relates to a digital front end receiver using a DC offset compensation scheme. The digital front end receiver includes a DC offset compensation filter configured to remove DC offset components from signals received from a digital mixer and a Cascaded Integrator-Comb (CIC) decimation filter configured to reduce a sampling rate of the signals received from the DC offset compensation block.
Abstract:
A digital RF receiver does not use a separate receiver according to a mode and a band for multi-mode reception, MIMO reception, and bandwidth extension reception, and changes only setting variables in a single receiver structure so as to implement multi-mode reception, MIMO reception, bandwidth extension reception, and/or simultaneous multi-mode operation, such that complexity of the receiver, development cost, and power consumption can be reduced.
Abstract:
Disclosed is a method for receiving an analog signal from a receiver supporting at least a first channel band and a second channel band. The method for receiving an analog signal includes sampling the analog signal received through an antenna, generating a decimated signal by passing the sampled signal to a CIC decimation filter; and inputting the decimated signal to a channel selection filter.
Abstract:
Disclosed is a method for receiving an analog signal from a receiver supporting at least a first channel band and a second channel band. The method for receiving an analog signal includes sampling the analog signal received through an antenna, generating a decimated signal by passing the sampled signal to a CIC decimation filter; and inputting the decimated signal to a channel selection filter.
Abstract:
The present invention relates to a digital front end receiver using a DC offset compensation scheme. The digital front end receiver includes a DC offset compensation filter configured to remove DC offset components from signals received from a digital mixer and a Cascaded Integrator-Comb (CIC) decimation filter configured to reduce a sampling rate of the signals received from the DC offset compensation block.
Abstract:
This invention is regarding mobile communication digital receiver and operating methods of a digital front end, which uses a digital mixer to change the center frequency to DC; a digital mixer allows the user to evade I/Q mismatch challenges; an Analog-to-Digital Converter (ADC) converts a Radio Frequency analog signal to a digital signal; a digital mixer converts the ADC's output signal's center frequency to DC; a digital front end has an automatic gain control over multiple frequency bands and contains a noise filter; a modem receives the digital front end's output and demodulates the signal.
Abstract:
A chemical mechanical polishing (CMP) slurry composition for polishing an organic layer and a method of forming a semiconductor device using the same are disclosed. The CMP slurry composition may include from 0.001% to 5% by weight of oxide-polishing particles; from 0.1% to 5% by weight of an oxidant; from 0% to 5% by weight of a polishing regulator; from 0% to 3% by weight of a surfactant; from 0% to 3% by weight of a pH regulator; and from 79% to 99.889% by weight of deionized water. The use of the CMP slurry composition makes it possible to allow a silicon-free organic layer to be polished with a selectivity higher than 6:1 with respect to an oxide layer.
Abstract:
A resist underlayer composition and a method of manufacturing a semiconductor integrated circuit device, the resist underlayer composition including a solvent and an organosilane-based polymer, the organosilane-based polymer being a polymerization product of at least one first compound represented Chemical Formulae 1 to 3 and at least one second compound represented by Chemical Formulae 4 and 5.