Abstract:
An organic light emitting display apparatus including a substrate including a plurality of pixel areas; a pixel electrode on the substrate; an opposite electrode on the pixel electrode, the opposite electrode transmitting light; an organic light emitting layer between the pixel electrode and the opposite electrode, the organic light emitting layer emitting a first light toward the opposite electrode; a light emitting layer on the opposite electrode, the light emitting layer absorbing a portion of the first light and emitting a second light; and a sealing layer on the light emitting layer, the sealing layer sealing the pixel electrode, the opposite electrode, the organic light emitting layer, and the light emitting layer.
Abstract:
A method of driving a head mounted display is provided. The method derives a position adjustment data by displaying a binocular position adjustment image on a left-eye panel region and a right-eye panel region, derives a size adjustment data by displaying a binocular size adjustment image on the left-eye panel region and the right-eye panel region, generates a luminance adjustment data based on a difference between a left-eye and a right-eye luminance perception data, converts an image source into an input image data based on the position adjustment data, the size adjustment data, and the luminance adjustment data, and displays an image corresponding to the input image data.
Abstract:
An organic light emitting display apparatus including a substrate including a plurality of pixel areas; a pixel electrode on the substrate; an opposite electrode on the pixel electrode, the opposite electrode transmitting light; an organic light emitting layer between the pixel electrode and the opposite electrode, the organic light emitting layer emitting a first light toward the opposite electrode; a light emitting layer on the opposite electrode, the light emitting layer absorbing a portion of the first light and emitting a second light; and a sealing layer on the light emitting layer, the sealing layer sealing the pixel electrode, the opposite electrode, the organic light emitting layer, and the light emitting layer.
Abstract:
An organic light emitting display apparatus including a substrate including a plurality of pixel areas; a pixel electrode on the substrate; an opposite electrode on the pixel electrode, the opposite electrode transmitting light; an organic light emitting layer between the pixel electrode and the opposite electrode, the organic light emitting layer emitting a first light toward the opposite electrode; a light emitting layer on the opposite electrode, the light emitting layer absorbing a portion of the first light and emitting a second light; and a sealing layer on the light emitting layer, the sealing layer sealing the pixel electrode, the opposite electrode, the organic light emitting layer, and the light emitting layer.
Abstract:
An organic light emitting display apparatus including a substrate including a plurality of pixel areas; a pixel electrode on the substrate; an opposite electrode on the pixel electrode, the opposite electrode transmitting light; an organic light emitting layer between the pixel electrode and the opposite electrode, the organic light emitting layer emitting a first light toward the opposite electrode; a light emitting layer on the opposite electrode, the light emitting layer absorbing a portion of the first light and emitting a second light; and a sealing layer on the light emitting layer, the sealing layer sealing the pixel electrode, the opposite electrode, the organic light emitting layer, and the light emitting layer.
Abstract:
An organic light emitting display apparatus including a substrate including a plurality of pixel areas; a pixel electrode on the substrate; an opposite electrode on the pixel electrode, the opposite electrode transmitting light; an organic light emitting layer between the pixel electrode and the opposite electrode, the organic light emitting layer emitting a first light toward the opposite electrode; a light emitting layer on the opposite electrode, the light emitting layer absorbing a portion of the first light and emitting a second light; and a sealing layer on the light emitting layer, the sealing layer sealing the pixel electrode, the opposite electrode, the organic light emitting layer, and the light emitting layer.
Abstract:
A backlight unit includes a light source which generates a first light; a quantum dots member which is spaced apart from the light source by a first distance and converts the first light into a second light; a guide member which lengthwise extends in a first direction and fixes positions of the light source and the quantum dots member; and an optical member which reflects the second light. The guide member guides the first light from the light source to the quantum dots member and guides the second light from the quantum dots member to the optical member.
Abstract:
A prism sheet includes: a first portion including a prism elongated in a first direction; and a second portion including a prism elongated in a second direction different from the first direction. The second direction is vertical to a light incident surface of a light guide plate of a backlight unit, a light source of the backlight unit faces the light indicent surface of the light guide plate, and the prism sheet overlaps a light emitting surface of the light guide plate.
Abstract:
In a light source module and a backlight assembly having the light source module, the light source module includes a flexible printed circuit board; a light source part on an upper surface of the flexible printed circuit board and including a light emitting chip; a substrate on a lower surface of the flexible printed circuit board; and a heat dissipating part which extends from the light emitting chip and contacts the substrate.
Abstract:
A display device includes display panels; and a specular reflection structure that converts positions of images displayed by the display panels and merges the images at a predetermined position to generate an integrated image, wherein the specular reflection structure includes at least one specular mirror that corresponds to each of the display panels, and the at least one specular mirror converts a display direction by reflecting the images displayed on the display panels wherein a size of each of the images is maintained.