Abstract:
An embodiment of a driving device is proposed for supplying at least one regulated global output current to a load. The driving device includes programming means for programming a value of the global output current within a global current range. Reference means are provided for supplying a reference voltage, which has a value corresponding to the value of the global output current. Conversion means are then used for converting the reference voltage into the global output current. The conversion means may further include a plurality of conversion units for corresponding partial current ranges, which partition the global current range.
Abstract:
A first RF-to-DC circuit receives a radiofrequency signal and produces a first converted signal delivered to an energy storage circuit. A second RF-to-DC circuit, which is a down-scaled replica of the first RF-to-DC circuit, produces a second converted signal from the radiofrequency signal that is indicative of an open-circuit voltage of the first RF-to-DC circuit. The first RF-to-DC section includes N sub-stages, with a sub-set of sub-stages being selectively activatable. A window comparison of the second converted signal generates a first signal and a second signal indicative of whether the second converted signal is within a range of values proportional to a voltage reference signal. The sub-set of sub-stages is selectively deactivated, respectively activated, when the performed window comparison has a first result, respectively, a second result.
Abstract:
An energy-harvesting generator provides energy for storage in a capacitor. A sensing circuit senses a voltage across the capacitor and generates an activation signal as a function of the sensed voltage. The activation signal switches from a first value to a second value when the sensed voltage reaches an upper threshold and switches from the second value to the first value when the sensed voltage reaches a lower threshold. A signal transmitter powered by stored energy in the capacitor responds to the activation signal being switched to the second value by activating and transmitting a transmission signal. The signal transmitter further responds to the activation signal being switched to the first value by discontinuing transmission of the transmission signal and deactivating. A duration of time elapsing between de-activation and activation of the transmitter is indicative of an amount of energy harvested by the energy-harvesting electric generator.
Abstract:
An energy harvester includes an elongated tubular casing extending around a longitudinal axis between opposed first and second ends. A body is arranged in the casing. A helical electrical winding is wound around the longitudinal axis. The body is arranged to move along the longitudinal axis with alternate motion away from the first end towards the second end and away from the second end towards the first end. As a result of this alternate motion, an electromotive force is produced in the at least one helical electrical winding. Furthermore, at least one of the first and second ends includes a piezoelectric transducer that is configured to co-operate in a kinetic energy transfer relationship with the at least one body to generate an electric voltage as a result of the at least one body reaching, in the alternate motion, an end-of-travel position towards the piezoelectric transducer.
Abstract:
An embodiment of a driving device is proposed for supplying at least one regulated global output current to a load. The driving device includes programming means for programming a value of the global output current within a global current range. Reference means are provided for supplying a reference voltage, which has a value corresponding to the value of the global output current. Conversion means are then used for converting the reference voltage into the global output current. The conversion means may further include a plurality of conversion units for corresponding partial current ranges, which partition the global current range.
Abstract:
A first generator produces a first signal that is supplied to an energy storage circuit. Energy transfer circuitry coupled to the energy storage circuit transfers energy stored in the energy storage circuit to an output node. A driver circuit coupled to the energy transfer circuitry switches the energy transfer circuitry between a state where energy from the first signal is stored in the energy storage circuit and a state where energy stored in the energy storage circuit section is delivered to the output node. A voltage at the energy storage circuit varies between an upper value and a lower value around a voltage setting point. A second generator, which is a scaled-down replica of the first generator, produces a second signal that is indicative of an open-circuit voltage of the first generator. The driver circuit uses the second signal to set the voltage setting point.
Abstract:
A power supply circuit for an electrical appliance, including a turning-on stage configured for determining a transition from a turned-off state, in which the power supply circuit is off and does not supply electric power, to a turned-on state of the power supply circuit. The turning-on stage includes a transducer of the remote-control type configured for triggering the transition in response to the reception of a wireless signal. In some embodiments, operating power is transmitted from a remote controller to a control circuit of the electronic equipment, such that the electronic equipment can be turned on remotely but draws zero standby power.
Abstract:
A system to sanitize a surface includes an emitter. The emitter of the system to sanitize the surface includes: a light source configured to generate light at a sanitizing wavelength; a receiver configured to receive a wireless signal; and a processing circuit for the emitter configured to turn the light source on, turn the light source off, and adjust an intensity of light generated by the light source depending on the wireless signal. The system to sanitize the surface further includes a sensor. The sensor of the system to sanitize the surface includes: a photoelectric transducer configured to convert light at the sanitizing wavelength to a current; and a processing circuit for the sensor powered by the current and in communication with a transmitter to transmit the wireless signal, the processing circuit for the sensor being configured to control emission of the wireless signal depending on a power level supplied by the current.
Abstract:
A radiofrequency-powered device such as a wireless passive sensor node, for instance, comprises a radiofrequency energy harvesting circuit configured to be coupled to an antenna to harvest radiofrequency energy captured by the antenna from a radiofrequency signal. The radiofrequency energy harvesting circuit is configured to be coupled to an energy storage component to store therein energy harvested via the radiofrequency energy harvesting circuit. The device comprises user circuitry configured to be supplied with energy harvested via the radiofrequency energy harvesting circuit and to operate in accordance with one of a plurality of configurations as a function of configuration data supplied thereto. A receiver circuit coupled to the radiofrequency energy harvesting circuit is configured to receive a configuration data signal modulating the radiofrequency signal and supply to the user circuitry configuration data extracted from the configuration data signal received.
Abstract:
A first Radio-Frequency-to-Direct-Current (RF2DC) transducer receives a first signal from a sensing antenna and generates energy stored by an energy storage circuit. An energy transfer circuit is controllably switched between an energy storage state where energy is stored in the energy storage state and an energy transfer state where stored energy is transferred to a load. The voltage at the energy storage circuit is alternatively variable between an upper value and a lower value around a voltage setting point. A second RF2DC transducer, which is a down-scaled replica of the first RF2DC transducer, produces a second signal indicative of an open-circuit voltage of the first RF2DC transducer. The voltage setting point is set as a function of the second signal indicative of the open-circuit voltage of the first RF2DC transducer.