Abstract:
A digital video rescaling system is provided. The system includes an image data input configured to receive input support pixels y1 to yn and a sharpness control module configured to generate a sharpness control parameter Kshp. The system further includes an interpolated pixel generator configured to use an adaptive interpolation kernel to generate an interpolated pixel ys based on the input support pixels, and adjust a sharpness of the interpolated pixel ys based at least partly upon the sharpness control parameter Kshp. The system also includes a de-ringing control unit to adjust the ringing effect of the interpolated pixel based on a local image feature Kfreq, and an output module configured to output the adjusted interpolated pixel for display.
Abstract:
A digital video rescaling system is provided. The system includes an image data input configured to receive input support pixels y1 to yn and a sharpness control module configured to generate a sharpness control parameter Kshp. The system further includes an interpolated pixel generator configured to use an adaptive interpolation kernel to generate an interpolated pixel ys based on the input support pixels, and adjust a sharpness of the interpolated pixel ys based at least partly upon the sharpness control parameter Kshp. The system also includes a de-ringing control unit to adjust the ringing effect of the interpolated pixel based on a local image feature Kfreq, and an output module configured to output the adjusted interpolated pixel for display.
Abstract:
Various embodiments provide tone mapping of images and video from one dynamic range to an available dynamic range of a display device while preserving or enhancing image details. According to one embodiment, an enhanced tone mapping module is configured to decrease a luminance of an image or video from a high dynamic range to a standard dynamic range. Conversely, according to one embodiment, an enhanced inverse tone mapper to increase a luminance of an image or video from a standard dynamic range to a high dynamic range.
Abstract:
A system for determining an aspect ratio of image content based on an analysis of the content. In an embodiment, an analyzer is configured to receive a data input corresponding to an image in a stream of images that constitute a video sequence of images. The analyzer is further configured to determine a mathematical representation of the image content based on a power spectrum analysis of vertical components of the image in comparison to a power spectrum analysis of horizontal components of the image. Based on this comparison of the vertical frequency components to the horizontal frequency components, a determination about the original aspect ratio of the image may be determined. This determination may be used by a video processor to correctly apply aspect ratio conversion for final image output.