Abstract:
A ventilator device (10) includes a display screen (50, 101) to display a plurality of ventilator functions/modes (or menus) and a plurality of parameters (or sub-menus) associated with at least one of said ventilator functions/modes. A control member, e.g., in the form of a multifunction finger-operable dial (55, 102) is provided to select from the plurality of ventilator functions/modes and/or parameters, the dial being manipulatable in a first manner (e.g., rotation) to scroll between said parameters, and being manipulatable in a second manner (e.g., touching, pressing and/or depressing) to select one of the ventilator functions/modes and/or parameters.
Abstract:
A tub is configured to contain a supply of water and is configured to be inserted into a chamber of a humidifier. The tub includes a tub base configured to contain the supply of water. The tub also includes a tub lid and a flow plate provided between the tub base and the tub lid. The flow plate includes a water level indicator configured to indicate a level of the supply of water in the tub base. In addition, the water level indicator includes a generally rectangular portion and a generally triangular portion.
Abstract:
The present invention provides a vent assembly suitable for use with a respiratory mask of the type used in CPAP treatment. In one embodiment the vent is made of a thin air permeable membrane. Generally, the membrane is thinner than 0.5 mm. The membrane can be made of a hydrophobic material such as polytetrafluoroethylene (PTFE). The membrane can also be fabricated from expanded PTFE. The expanded PTFE membrane is mounted on a polypropylene scrim. The pores of the membrane have a reference pore size of 10 to 15 microns. In an alternative embodiment, the vent assembly includes a vent constructed from stainless steel. In another embodiment the membrane has a superficial cross-sectional area of approximately 500 mm2. In another embodiment the vent assembly comprises a membrane attached to a vent frame, the vent assembly forming an insert which can be removeably attached to a mask fame.
Abstract:
A tub is configured to contain a supply of water and is configured to be inserted into a chamber of a humidifier. The tub includes a tub base configured to contain the supply of water. The tub also includes a tub lid and a flow plate provided between the tub base and the tub lid. The flow plate includes a water level indicator configured to indicate a level of the supply of water in the tub base. In addition, the water level indicator includes a generally rectangular portion and a generally triangular portion.
Abstract:
A vent assembly for use with a respiratory mask of the type used in CPAP treatment. In one embodiment, the vent is made of a thin air permeable membrane. The membrane can be made of a hydrophobic material such as expanded polytetrafluoroethylene (PTFE). An expanded PTFE membrane is mounted on a polypropylene scrim. The pores of the ePTFE membrane have a reference pore size of 10 to 15 microns. Alternatively, the vent assembly includes a stainless steel vent having holes with diameters less than about 0.2 mm. In another embodiment, the membrane has a superficial cross-sectional area of approximately 500 mm2. In further embodiments, a vent of a mesh material, e.g., an auxetic vent or a PTFE mesh, may be used as an air permeable membrane, either alone or in combination with a traditional vent structure.
Abstract:
A flow generator and humidifier construction is described, including a flow generator construction adapted to reduce noise output compared to known flow generators of comparable size. The flow generator includes a chassis forming first and second muffler volumes and a venturi-shaped connection portion, and a metal/polymer composite material blower enclosure which suppresses noise from the blower. The flow generator may be programmed to include a reminder system including a menu from which the user may request a reminder to take specific action, e.g., replace a component, call a physician, and/or enter patient data card, etc.
Abstract:
A humidifier includes a tub configured to contain a supply of water and a heater including a first polymer film having an electrically conductive circuit provided upon a surface. The first polymer film is electrically insulating and the tub is formed of molded resin and the heater is molded at least partially within the resin. A respiratory apparatus for delivering a flow of breathable gas to a patient includes the humidifier. A method of humidifying a flow of pressurized breathable gas includes passing the flow of pressurized breathable gas over a supply of water contained in a tub. The tub is formed of molded resin and a heater including a first polymer film having an electrically conductive circuit on a first surface is molded at least partially within the resin.
Abstract:
A positive airway pressure (PAP) device for supplying a flow of breathable gas to a patient includes a first housing; a flow generator provided in the first housing, the flow generator configured to generate a flow of breathable gas; a second housing configured to be connected to the first housing, the second housing including a channel having an inlet configured to receive the flow of breathable gas and an outlet configured to discharge the flow of breathable gas, wherein the first housing is provided on top of the second housing such that a footprint of the PAP device is not substantially increased beyond a footprint of the second housing.
Abstract:
A breathable gas supply apparatus has a flow generator configured to pressurize a flow of breathable gas and a humidifier base unit configured to be coupled to the flow generator. A water container is configured to be removably coupled to the humidifier base unit and includes an air inlet and an air inlet passage extending into an interior of the water container from the air inlet. The air inlet passage is configured to direct the pressurized flow of breathable gas in a direction that is substantially parallel to a base of the water container. A barrier wall is provided across an outlet end of the air inlet passage and extends downward from the air inlet passage toward the water container base. In addition, a curved wall opposes both the outlet end of the air inlet passage and the barrier wall and extends downward toward the water container base. The breathable gas supply apparatus also includes a connector defining an airflow passage between an outlet of the flow generator and the air inlet of the water container.
Abstract:
A blower assembly is configured to deliver a flow of breathable gas at a continuously positive pressure with respect to ambient air pressure to a patient interface in communication with an entrance to a patient's airways including at least an entrance of the patient's nares, while the patient is sleeping, to ameliorate sleep disordered breathing. The blower assembly includes a motor having a shaft that extends from opposite sides of the motor. The blower assembly also includes an impeller and a circuit board. The impeller is attached to the shaft on a first side of the motor and is structured to rotate in close proximity to a volute wall. The circuit board is configured to control power supplied to the motor and is configured to disable the motor when the impeller is closer than a predetermined distance from the volute wall.