Abstract:
The present invention: makes it possible to improve the reliability of a semiconductor device; and provides a method of manufacturing the semiconductor device comprising the steps of (a) providing a semiconductor wafer having a pad electrode, a first conductive layer comprised of copper, a photoresist film, and a second conductive layer comprised of gold, (b) forming a protective film comprised of iodine on the surface of the second conductive layer, (c) removing the photoresist film, (d) irradiating the protective film with argon ions and removing the protective film, and (e) bringing a part of a bonding wire into contact with the surface of the second conductive layer.
Abstract:
Reliability of a semiconductor device is improved.A wire bonding step includes a step of exposing a wire and a pad electrode to a reducing gas atmosphere, forming a first hydroxyl layer on a surface of a ball portion, and forming a second hydroxyl layer on a surface of the pad electrode, a first bonding step of temporarily joining the ball portion to the pad electrode through the first hydroxyl layer and the second hydroxyl layer, and after the first bonding step, a step of actually joining the ball portion to the pad electrode by performing a heat treatment on a semiconductor chip and a base material.
Abstract:
To provide a semiconductor device having improved reliability. A method of manufacturing the semiconductor device includes connecting a wire comprised of copper with a conductive layer formed on the pad electrode of a semiconductor chip, heat treating the semiconductor chip, and then sealing the semiconductor chip and the wire with a resin.
Abstract:
A compact and high-reliability semiconductor device is implemented. The bonding wires situated in the vicinity of a gate, and the bonding wires situated in the vicinity of a vent facing to the gate across the center of a semiconductor chip in a molding step have a loop shape falling inwardly of the semiconductor chip, have a weaker pulling force (tension) than those of other bonding wires, and are loosely stretched with a margin. The bonding wires situated in the vicinity of the gate in the molding step are, for example, a first wire and a fifth wire to be connected with a first electrode pad and a fifth electrode pad, respectively. Whereas, the bonding wires situated in the vicinity of the vent in the molding step are, for example, a third wire and a seventh wire to be connected with a third electrode pad and a seventh electrode pad, respectively.
Abstract:
A manufacturing method of a BGA, includes the steps of: providing a semiconductor chip having electrode pads; and removing a natural oxide film formed on the surface of each of the electrode pads. Further, a first film comprised of a conductive member is formed on the surface of the electrode pad exposed by removing the natural oxide film, a wire is connected with the first film, and part of the wire is brought into contact with the electrode pad to form an alloy layer at the interface between the wire and the electrode pad. The crystal structure of the first film is comprised of a body-centered cubic lattice or a hexagonal close-packed lattice. The cost of the semiconductor device can be reduced while the bonding reliability of wire bonding of the semiconductor device is ensured.
Abstract:
A manufacturing method of a BGA, includes the steps of: providing a semiconductor chip having electrode pads; and removing a natural oxide film formed on the surface of each of the electrode pads. Further, a first film comprised of a conductive member is formed on the surface of the electrode pad exposed by removing the natural oxide film, a wire is connected with the first film, and part of the wire is brought into contact with the electrode pad to form an alloy layer at the interface between the wire and the electrode pad. The crystal structure of the first film is comprised of a body-centered cubic lattice or a hexagonal close-packed lattice. The cost of the semiconductor device can be reduced while the bonding reliability of wire bonding of the semiconductor device is ensured.