Abstract:
Systems and methods are disclosed in which a diagnostic probe is configured for performing diagnostic measurements and/or therapeutic interventions and for measuring the local surface profile of a local surface region an object. Various example embodiments are described in which the surface profile of the local surface region, when compared to the surface profile of an extended surface region, is employed to provide guidance for positioning and/or orienting the probe when performing a diagnostic measurement. The surface profile within the local surface region may be employed to generate feedback for repeating a previous diagnostic measurement, such that the repeat measurement is performed at the previous location on the object. In other embodiments, surface profile detection is employed to control the positional and/or orientational probe alignment during an iterative tissue removal method in which successive tissue layers are removed when the presence of a pathology is confirmed via a diagnostic measurement.
Abstract:
A detection system is provided for the measurement of in-vitro dental samples. The detection system includes an optical detection module that is configured for the detection of optical signals that are emitted in response to the absorption of an incident optical beam, and a control and processing unit that is configured for processing the detected optical signals and generating an image. The system also includes a sample holder may be removed and subsequently replaced without requiring recalibration of the system. In some embodiments, the optical detection module is configured for combined measurement of photothermal radiation and luminescence in response to the absorption of the incident optical beam.
Abstract:
A detection system is provided for the measurement of in-vitro dental samples. The detection system includes an optical detection module that is configured for the detection of optical signals that are emitted in response to the absorption of an incident optical beam, and a control and processing unit that is configured for processing the detected optical signals and generating an image. The system also includes a sample holder may be removed and subsequently replaced without requiring recalibration of the system. In some embodiments, the optical detection module is configured for combined measurement of photothermal radiation and luminescence in response to the absorption of the incident optical beam.
Abstract:
An intraoral optical probe is provided that includes a distal elongate optical waveguide for interrogating dental tissue. In some example embodiments, the elongate optical waveguide has dimensions suitable for the insertion of the waveguide into an exposed root canal. According to various example embodiments, the elongate optical waveguide, when inserted into an internal region of a tooth, can direct incident optical radiation from the intraoral optical probe directly onto an inner surface, such as an internal surface of a root canal, such that status of the root canal can be interrogated directly. The intraoral optical probe may be employed to provide intraoperative feedback regarding internal dental tissue, such as interoperative feedback pertaining to the interior of the root canal during an endodontic procedure, location of secondary or lateral root canals, location of the apex or tip of the root canal system and or detection of the pulp chamber roof or floor.