Abstract:
An apparatus and a process for controlling tyres wherein the apparatus includes at least one control station which includes: a base; a rotating table mounted on the base so as to be able to rotate around a respective vertical rotation axis; at least one control device operatively active at the rotating table; and a movement device configured for rotating the rotating table around the vertical rotation axis. The rotating table has a substantially horizontal abutment portion configured for receiving and supporting a sidewall of a tyre to be controlled. The abutment portion is movable in the horizontal plane according to two directions with respect to the vertical rotation axis by means of an actuator. A detection device is configured for detecting a shift between the vertical rotation axis and the main axis of the tyre. An electronic management unit operatively connected to the detection device and to the actuator is configured for driving the actuator and moving the abutment portion according to the two directions as a function of the detected shift in order to render such shift less than a pre-established value, so as to center the tyre with respect to the vertical rotation axis before executing the controls.
Abstract:
A process for manufacturing tyres for vehicle wheels includes associating at least one reinforcing structure with at least one surface portion of at least one tyre component laid on a forming support, wherein associating the at least one reinforcing structure includes bringing, through a handling and deposition member, at least one reinforcing element to the forming support and depositing, through said handling and deposition member, the reinforcing element on a respective deposition part defined on a surface portion of the component. The depositing includes gradually laying the reinforcing element on the deposition part following the profile of the deposition part in a circumferential direction.
Abstract:
A process for building tyres provides for building a carcass sleeve around a forming drum having an application diameter and two lateral half-portions axially moveable relative to each other. The carcass sleeve comprises at least one carcass ply coaxially engaged around each of the axially opposite end flaps thereof to an annular anchoring structure defining a fitting diameter smaller than the application diameter. The building of the carcass sleeve comprises: applying and stopping a leading end of a semi-finished product in form of continuous strip cut to size against a continuous surface of the forming drum; winding the semi-finished product in form of continuous strip cut to size circumferentially around the forming drum; joining a trailing end of the semi-finished product to the leading end at said continuous surface. The continuous surface is extended only partly around the forming drum. The semi-finished product, except for the leading end and the trailing end, is laid against a discontinuous circumferential surface of the forming drum adjacent to the continuous surface and belonging to the two lateral half-portions.
Abstract:
A process and a drum for looping annular anchoring structures in a process for building tyres for vehicle wheels includes: depositing a loop on a drum including a radially expandable/contractible intermediate annular portion and, in a position axially adjacent to the opposite axial ends of said intermediate annular portion, a pair of radially expandable/contractible lateral annular portions; associating an annular anchoring structure with a radially outer annular surface portion of the loop defined at the intermediate annular portion; and turning up each of opposite end edges of the loop on the annular anchoring structure through the lateral annular portions as a result of a thrusting stress imparted by a respective lateral annular portion of said pair of lateral annular portions because of a synchronous radial movement and a synchronous axial displacement of a respective plurality of circumferentially adjacent first angular sectors.
Abstract:
A process for manufacturing tyres for vehicle wheels, comprising the step of building on a forming support a carcass structure comprising at least one carcass ply and, at at least one end edge of the carcass ply, at least one annular anchoring structure comprising at least one substantially circumferential annular insert and at least one filling insert associated to said at least one substantially circumferential annular insert. The step of building the carcass structure comprises the steps of positioning the annular anchoring structure on the carcass ply by moving the annular substantially circumferential insert into contact with an end edge of the carcass ply by means of a special positioning member, pulling down the filling insert on the end edge of the carcass ply and turning up a free end portion of the end edge of the carcass ply so as to form a turned up end portion of the carcass ply including said annular anchoring structure. The pulling down of the filling insert on the end edge of the carcass ply is carried out by a special pulling down member while the substantially circumferential annular insert is retained into a contact position with the end edge of the carcass ply by said positioning member.
Abstract:
A method for managing the continuous feeding of an elongate element wound on reels to a station for building a tyre, wherein the elongate element is continuously supplied from an unwinding device of successive reels. When the terminal end of the elongate element wound on a first reel leaves said first reel, the method provides for: the first reel to be moved away from the unwinding device on a first movable carriage; a second reel, successive to the first reel, and mounted on a second movable carriage, to be positioned in place of the first reel; and the terminal end of the elongate element previously wound on the first reel, to be joined to the starting end of the elongate element wound on the second reel.
Abstract:
A carcass ply is built on a forming drum by application of a plurality of strip-like elements, through the steps of: setting a width of these strip-like elements, setting a width of the overlapped part between two adjacent strip-like elements, setting a fitting diameter of the forming drum, calculating a whole number of strip-like elements to be applied. The whole number of strip-like elements is applied by rotating the forming drum around a geometric rotation axis thereof, and applying pairs of strip-like elements by means of a first and second laying unit located close to opposite portions of the forming drum. When the calculated whole number of strip-like elements is an odd number, the first laying unit is shifted along an adjustment path orthogonal to the geometric rotation axis and substantially tangent to the radially external laying surface of the forming drum.
Abstract:
A process and an apparatus for labelling tyres for vehicle wheels. The apparatus includes an application head with a support surface for a label to be applied, at least one label holder feeder and movement devices connected to the application head. The movement devices are configured for moving the application head between the label holder feeder for picking up a label, and an application zone of the label to a green tyre. The apparatus further includes a guide device located at the application zone. The guide device includes a guide extending along a predefined path and a support movable along the guide.
Abstract:
A reinforcement annular structure of a tyre being processed is formed by arranging a forming drum externally carrying a deposition surface; arranging an application member supported in thrust relation toward the deposition surface; longitudinally guiding a continuous elongated element toward a point of application between the deposition surface and a work surface presented by the application member; and winding the continuous elongated element circumferentialiy around the deposition surface in order to form coils that are axially side-by-side each other. During winding, the work surface of the application member operates in abutment relation against at least one of the cons previously formed by the continuous elongated element.
Abstract:
A plant for building tyres for vehicle wheels, includes a sleeve building area in which devices for obtaining carcass sleeves operate, a crown building area in which devices for obtaining crown structures operate and a shaping station for shaping each carcass sleeve according to a toroidal configuration. Transfer devices for transferring the carcass sleeves from the sleeve building area to the shaping station, by means of a first translator configured for picking up each carcass sleeve from an outlet station of the sleeve building area, a second translator configured for releasing each carcass sleeve in the shaping station, and a storage device operatively interposed between said first translator and second translator.