Abstract:
A nanocalorimeter device includes a substrate having test cells, each test cell comprising a sample location. Each sample location includes a reaction surface suitable for an enthalpic reaction of constituents of liquid droplets, droplet movement and configured to merge the droplets, and a layer of thermochromic material thermally coupled to the reaction surface. The thermochromic material is configured to exhibit a spectral shift in light emanating from the thermochromic material in response to a change in temperature of the merged droplets.
Abstract:
Spatially modulated light emanating from an object moving along a flow path is used to determine various object characteristics including object length along the flow direction. Light emanating from at least one object moving along in a flow path along a flow direction of a spatial filter is sensed. The intensity of the sensed light is time modulated according to features of the spatial filter. A time varying electrical signal is generated which includes a plurality of pulses in response to the sensed light. Pulse widths of at least some of the pulses are measured at a fraction of a local extremum of the pulses. The length of the object along the flow direction is determined based on the measured pulse widths.
Abstract:
A system is configured to determine a color distribution of an object moving along a flow direction relative to a spatial filter. The light emanating from the object is time modulated according to the mask features of the spatial filter. First and second detectors are arranged to sense the modulated light. The first detector senses light having a first wavelength spectrum and generates a first electrical output signal in response to the sensed light. The second detector light senses light having a second wavelength spectrum and generates a second electrical output signal in response to the sensed light. Signals from the first and second detectors include information about color distribution of the object.
Abstract:
A system is configured to determine a color distribution of an object moving along a flow direction relative to a spatial filter. The light emanating from the object is time modulated according to the mask features of the spatial filter. First and second detectors are arranged to sense the modulated light. The first detector senses light having a first wavelength spectrum and generates a first electrical output signal in response to the sensed light. The second detector light senses light having a second wavelength spectrum and generates a second electrical output signal in response to the sensed light. Signals from the first and second detectors include information about color distribution of the object.
Abstract:
A urine capturing arrangement is configured to receive urine from a user of a toilet, and a chamber is fluidically coupled to the capturing arrangement. A diverter is fluidically coupled between the capturing arrangement and the chamber. The diverter is configured to divert a volume of the received urine to the chamber. A detection unit is configured to sense for presence of a predetermined characteristic in the volume of the urine and to generate at least one electrical signal comprising information about the predetermined characteristic.
Abstract:
Spatially modulated light emanating from an object moving along a flow path is used to determine various object characteristics including object length along the flow direction. Light emanating from at least one object moving along in a flow path along a flow direction of a spatial filter is sensed. The intensity of the sensed light is time modulated according to features of the spatial filter. A time varying electrical signal is generated which includes a plurality of pulses in response to the sensed light. Pulse widths of at least some of the pulses are measured at a fraction of a local extremum of the pulses. The length of the object along the flow direction is determined based on the measured pulse widths.
Abstract:
Approaches for determining object position in a flow path are disclosed. A system includes a spatial filter having a length disposed along a longitudinal axis of the flow path and a width along a lateral axis of the flow path. The spatial filter has mask features configured to modulate light. Light emanating from objects moving along the flow path is detected. The detected light has a component along a detection axis that makes a non-zero angle with respect to the longitudinal and lateral axes. An electrical output signal that includes information about the trajectory depth of the object is generated in response to the detected light.
Abstract:
Embodiments are directed to an apparatus that includes a fluidic structure and optical components. The fluidic structure includes a transparent channel through which objects in an analyte fluid can travel along respective paths during operation of the apparatus. The optical components are configured to provide measurement light to the objects traveling through the transparent channel. The fluidic structure is configured to reversibly engage with a host structure. The host structure includes a source of the measurement light and electronics to receive and process output light emanating from the objects traveling in the channel. The fluidic structure makes an air-tight seal when engaged with the host structure.
Abstract:
Analysis of a system and/or sample involves the use of absorption-encoded micro beads. Each type of micro bead is encoded with amounts of the k dyes in a proportional relationship that is different from proportional relationships of the k dyes of others of the n types of absorption-encoded micro beads. A system and/or a sample can be analyzed using information obtained from detecting the one or more types of absorption-encoded micro beads.
Abstract:
Devices and methods are provided for drug delivery. The device may include a housing having a first compartment containing a drug in a dry, solid form, a second compartment containing a liquid carrier for the drug, and an expansion member located within or adjacent to the first or second compartment. The second compartment may be fluidly connectable to the first compartment by a rupturable barrier or mechanical valve. The device may also include an actuation system configured to expand the expansion member to rupture the rupturable barrier or open the mechanical valve and permit the liquid carrier to flow into the first compartment and mix with the drug to form a reconstituted drug solution.