Abstract:
A method of making an inhalable medicament is provided, in particular a new solid-state form of tiotropium bromide. The medicament can be in the form of solid amorphous particles containing an intimate admixture of tiotropium bromide together with a pharmaceutically acceptable co-solid having a glass transition temperature of at least −50.degree. C., such as a sugar and/or sugar alcohol.
Abstract:
The present invention provides a process for preparing a particulate medicament that has greater homogeneity and a lower adhesion between the particles of the active ingredient and the carrier. The process comprises the steps of: (a) combining a pharmaceutically active ingredient in the form of an agglomerate of primary particles having an agglomerate particle size such that the agglomerate is capable of passing through a sieve having a mesh of 50-3000 .mu.m with a pharmaceutically acceptable particulate carrier, and (b) mixing the resultant material in a mixer to break up the agglomerate into primary particles dispersed in the pharmaceutically acceptable particulate carrier such that 90% or more of the pharmaceutically active ingredient exists as primary particles having a particle size of 50 .mu.m or less.
Abstract:
A method of treating at least one of COPD and/or asthma in a subject is provided, wherein an inhalable medicament is administered, in particular a new solid-state form of tiotropium bromide. The medicament can be in the form of solid amorphous particles containing an intimate admixture of tiotropium bromide together with a pharmaceutically acceptable co-solid having a glass transition temperature of at least -50° C., such as a sugar and/or sugar alcohol.
Abstract:
The present invention provides a process for preparing a particulate medicament that has greater homogeneity and a lower adhesion between the particles of the active ingredient and the carrier. The process comprises the steps of: (a) combining a pharmaceutically active ingredient in the form of an agglomerate of primary particles having an agglomerate particle size such that the agglomerate is capable of passing through a sieve having a mesh of 50-3000 .mu·m with a pharmaceutically acceptable particulate carrier, and (b) mixing the resultant material in a mixer to break up the agglomerate into primary particles dispersed in the pharmaceutically acceptable particulate carrier such that 90% or more of the pharmaceutically active ingredient exists as primary particles having a particle size of 50 .mu·m or less.