Abstract:
An interface circuit for signal transmission includes an amplifying circuit, a de-skew circuit and a latching unit. The amplifying circuit receives an input clock signal and outputs an output clock signal after amplifying the input clock signal. The de-skew circuit receives the output clock signal and outputs a de-skew clock signal as a trigger signal after removing a skew time of the output clock signal. The latching unit includes multiple sampling circuits, respectively receives multiple inputting data signals. The sampling circuits are controlled by the trigger signal to sample the inputting data signals and output multiple outputting data signals. The voltage amplitudes of the outputting data signals are larger than the voltage amplitudes of the inputting data signals and satisfy a required voltage amplitude by a subsequent circuit.
Abstract:
A display driver, which comprises: a first predetermined voltage level providing apparatus, for providing a first predetermined voltage level group comprising at least one first predetermined voltage level; a first image data providing apparatus, for outputting a first image data; and a detection controlling circuit, for determining if an output terminal of the first image data providing apparatus is pre-charged to the first predetermined voltage level according to a relation between an absolute value of a voltage level of the first image data and an absolute value of the first predetermined voltage level.
Abstract:
A display driver, which comprises: a first predetermined voltage level providing apparatus, for providing a first predetermined voltage level group comprising at least one first predetermined voltage level; a first image data providing apparatus, for outputting a first image data; and a detection controlling circuit, for determining if an output terminal of the first image data providing apparatus is pre-charged to the first predetermined voltage level according to a relation between an absolute value of a voltage level of the first image data and an absolute value of the first predetermined voltage level.
Abstract:
An interface circuit for signal transmission includes an amplifying circuit, a de-skew circuit and a latching unit. The amplifying circuit receives an input clock signal and outputs an output clock signal after amplifying the input clock signal. The de-skew circuit receives the output clock signal and outputs a de-skew clock signal as a trigger signal after removing a skew time of the output clock signal. The latching unit includes multiple sampling circuits, respectively receives multiple inputting data signals. The sampling circuits are controlled by the trigger signal to sample the inputting data signals and output multiple outputting data signals. The voltage amplitudes of the outputting data signals are larger than the voltage amplitudes of the inputting data signals and satisfy a required voltage amplitude by a subsequent circuit.
Abstract:
A display driving method and an associated driving circuit are provided, where the display driving method includes: checking relationships between two voltage levels respectively represented by two continuously received digital codes received by a specific digital code input terminal and a first predetermined threshold, and preferably further checking a relationship between at least one voltage level represented by at least one digital code of the two continuously received digital codes and a first predetermined zone, in order to determine whether to pre-charge a specific set of display cells within a plurality of sets of display cells, the specific set corresponding to the specific digital code input terminal; when it is determined to pre-charge the specific set of display cells, temporarily conducting a pre-charging voltage generator to the specific set of display cells to pre-charge the specific set of display cells.