Abstract:
A chip on film package is disclosed, including a flexible film, a patterned circuit layer, a chip, and a dummy metal layer. The flexible film includes a first surface and a second surface opposite to the first surface. The patterned circuit layer is disposed on the first surface. The chip is mounted on the first surface and electrically connected to the patterned circuit layer. The dummy metal layer covers the second surface capable of dissipating heat of the chip. The dummy metal layer is electrically insulated from the patterned circuit layer.
Abstract:
A package structure includes a first chip and a second chip. The first chip is connected to a pair of first signal lines and a plurality of first power lines. The second chip is connected to a pair of second signal lines and a plurality of second power lines. The first chip and the second chip belong to a common wafer. A separated street is between the first chip and the second chip.
Abstract:
A chip on film package including a flexible film, a first patterned circuit layer, one or more first chips, a second patterned circuit layer, and one or more second chips. The flexible film includes a first surface and a second surface opposite to the first surface. The first patterned circuit layer is disposed on the first surface. The one or more first chips are mounted on the first surface and electrically connected to the first patterned circuit layer. The second patterned circuit layer is disposed on the second surface. The one or more second chips are mounted on the second surface and electrically connected to the second patterned circuit layer.
Abstract:
A display device and a driving device thereof is disclosed. The driving device is coupled to a display panel. The driving device includes at least one first driver integrated circuit (IC) and at least one second driver integrated circuit (IC). The first driver integrated circuit is coupled to the display panel. The first driver integrated circuit drives the display panel and detects a first working temperature. The second driver integrated circuit is coupled to the display panel and the first driver IC. The second driver integrated circuit drives the display panel. The first driver IC stops driving the display panel and communicates with the second driver IC to stop driving the display panel when the first working temperature is substantially higher than a first given temperature.
Abstract:
A liquid crystal display panel and a display device are provided. The liquid crystal display includes a first common electrode, a second common electrode and pixels. The second common electrode and the first common electrode are electrically independent from each other. First pixels of the pixels are coupled to the first common electrode, and second pixels of the pixels are coupled to the second common electrode. Accordingly, usage or operation of the liquid crystal display panel is more flexible.
Abstract:
A liquid crystal display panel and a display device are provided. The liquid crystal display includes a first common electrode, a second common electrode and pixels. The second common electrode and the first common electrode are electrically independent from each other. First pixels of the pixels are coupled to the first common electrode, and second pixels of the pixels are coupled to the second common electrode. Accordingly, usage or operation of the liquid crystal display panel is more flexible.
Abstract:
A chip on film package is disclosed, including a flexible film and a chip. The flexible film includes a film base, a patterned metal layer includes a plurality of pads and disposed on an upper surface of the film base, and a dummy metal layer covering a lower surface of the film base and capable of dissipating heat of the chip. The dummy metal layer comprises at least one opening exposing the second surface, and at least one of the plurality of pads is located within the at least one opening in a bottom view of the chip on film package. The chip is mounted on the plurality of pads of the patterned metal layer.
Abstract:
A display panel including a plurality of pixels, a plurality of scan lines and a plurality of data lines is provided. The pixels are arranged in an array, and the array includes columns and rows. Each of the scan lines is coupled to the pixels located on the same row. Each of the data lines is coupled to the pixels located on the same column. The data lines are grouped into a plurality of data line groups, and each of the data line groups includes three or more data lines. The data line groups are respectively located between the pixels on the same row. The data line groups are configured to write display data into the pixels when the pixels are turned on. A display driving apparatus and a method for driving the display panel are also provided.
Abstract:
A driving device for a display system, comprising a first signal line, connecting to a timing control device of the display system for transmitting an instruction signal; a second signal line, connecting to the timing control device for transmitting a sync clock signal; and a plurality of driving units, for receiving the instruction signal from a timing control device of the display system via the first signal line, receiving a sync clock signal from the timing control device via the second signal line and generating a plurality of driving signals to a display device of the display system according to the instruction signal and the sync clock signal.
Abstract:
A display driving apparatus, including an image processor, a timing controller, and a plurality of source drivers, is provided. The image processor determines whether an image frame corresponding to a frame data is a static image and outputs the frame data and a determination result. The timing controller receives the frame data from the image processor and outputs the frame data. The source drivers receive the frame data from the timing controller and drive a display panel according to the frame data. Each of the source drivers includes a memory module configured to store the frame data corresponding to the static image. When the source drivers drive the display panel according to the frame data corresponding to the static image, the image processor stops outputting the frame data to the timing controller, and the timing controller stops outputting the frame data to the source drivers.