Abstract:
A connector system includes a cage with an intermediate section. The cage support a connector and the resulting connector system includes an upper port and a lower port. A heat sink is provided in the intermediate section that is configured to cool a module inserted into the lower port. Apertures can allow air to flow through the connector system so as to allow for improved cooling by more directly cooling the inserted module. The heat sink can be urged into the lower port by a biasing element.
Abstract:
A connector system includes a cage with an intermediate section. The cage support a connector and the resulting connector system includes an upper port and a lower port. A heat sink is provided in the intermediate section that is configured to cool a module inserted into the lower port. Apertures can allow air to flow through the connector system so as to allow for improved cooling by more directly cooling the inserted module. The heat sink can be urged into the lower port by a biasing element.
Abstract:
A connector system includes a cage with an intermediate section. The cage support a connector and the resulting connector system includes an upper port and a lower port. A heat sink is provided in the intermediate section that is configured to cool a module inserted into the lower port. Apertures can allow air to flow through the connector system so as to allow for improved cooling by more directly cooling the inserted module. The heat sink can be urged into the lower port by a biasing element.
Abstract:
A connector system includes a cage with an intermediate section. The cage support a connector and the resulting connector system includes an upper port and a lower port. A heat sink is provided in the intermediate section that is configured to cool a module inserted into the lower port. Apertures can allow air to flow through the connector system so as to allow for improved cooling by more directly cooling the inserted module. The heat sink can be urged into the lower port by a biasing element.
Abstract:
A receptacle includes a cooling channel that is positioned between a top port and a bottom port. A transfer member is positioned in the cooling channel and is configured to direct heat from an inserted plug module into the cooling channel. Air flowing through the cooling channel acts to remove thermal energy from the receptacle. A connector system may include a plug module that can be inserted into such a receptacle and the plug module can include grooves to help allow for direct cooling of the plug module, even when inserted into the receptacle.
Abstract:
A receptacle includes a cooling channel that is positioned between a top port and a bottom port. A transfer member is positioned in the cooling channel and is configured to direct heat from an inserted plug module into the cooling channel Air flowing through the cooling channel acts to remove thermal energy from the receptacle. A connector system may include a plug module that can be inserted into such a receptacle and the plug module can include grooves to help allow for direct cooling of the plug module, even when inserted into the receptacle.
Abstract:
A connector system includes a plurality of housing mounted on a circuit board and a plurality of cages are provided, each cage enclosing one of the housings, each of the cages including a front face that defines a first port, the cages being spaced apart a predetermined distance. A thermal washer is positioned around the cages, the thermal washer including a front portion and a main portion with air apertures that allow air to flow through the thermal washer and along a gap between the cages.