Abstract:
In one embodiment, network devices are configured to route traffic and signaling onto co-routed bypass tunnels. Co-routed bypass tunnels protect against node or link failures in a label switched paths. The co-routed bypass tunnels provide bidirectional protection. In one example, a node acting as the point of local repair (PLR) receives a resource reservation state message at a first node and extracts a tunnel sender address from the reservation state message. The PLR is configured to identify a bypass tunnel to a second node in the reverse direction of the label switched path and signal resource reservation messages over the bypass tunnel in the reverse direction. In another example, a PLR receives a resource reservation message with bypass tunnel identification and the PLR is configured to identify a bypass tunnel to a second node in the reverse direction.
Abstract:
In one embodiment, network devices are configured to route traffic and signaling onto co-routed bypass tunnels. Co-routed bypass tunnels protect against node or link failures in a label switched paths. The co-routed bypass tunnels provide bidirectional protection. In one example, a node acting as the point of local repair (PLR) receives a resource reservation state message at a first node and extracts a tunnel sender address from the reservation state message. The PLR is configured to identify a bypass tunnel to a second node in the reverse direction of the label switched path and signal resource reservation messages over the bypass tunnel in the reverse direction. In another example, a PLR receives a resource reservation message with bypass tunnel identification and the PLR is configured to identify a bypass tunnel to a second node in the reverse direction.
Abstract:
In one embodiment, for a point to multipoint label switched path, an intermediate node receives a re-evaluation request from a head-end node for at least one routing path having a destination in a loosely routed network for a single destination or for a plurality of destinations in the label switched path forming tree or sub-tree. In response to the re-evaluation request, the intermediate node determines an availability for a remerge-free preferred path for the destination(s), which includes at least one loosely routed next hop, and the intermediate node transmits a preferred path available message to the head-end node based on the determined availability of the remerge-free preferred path.
Abstract:
In an embodiment, a method is disclosed for minimizing soft preemptions of LSPs. Upon receiving a reservation message for an LSP whose requested bandwidth that exceeds the available bandwidth of downstream links, a network node may select a set of LSPs for soft preemption and share the selection with other nodes along their paths, both upstream and downstream. By coordinating the selection of LSPs to soft-preempt among nodes on the path, fewer LSPs may require soft preemption, which may result in minimizing excessive network disruptions, and thus, allowing the network to function more efficiently.
Abstract:
In an embodiment, a method is disclosed for minimizing soft preemptions of LSPs. Upon receiving a reservation message for an LSP whose requested bandwidth that exceeds the available bandwidth of downstream links, a network node may select a set of LSPs for soft preemption and share the selection with other nodes along their paths, both upstream and downstream. By coordinating the selection of LSPs to soft-preempt among nodes on the path, fewer LSPs may require soft preemption, which may result in minimizing excessive network disruptions, and thus, allowing the network to function more efficiently.
Abstract:
A path protection method that includes: establishing a point to multi-point (P2MP) tree spanning from a head node to a plurality of tail nodes, the P2MP tree providing a label switched path (LSP) from the head node to a particular tail node; identifying a first and a second pluralities of source-to-leaf (S2L) sub-LSPs for the LSP included within the P2MP tree, each corresponding pair of S2L sub-LSP in the first and second pluralities are path diverse; setting a first flag in a RSVP path message to designate the second plurality of S2L sub-LSPs as protecting respective S2L sub-LSPs in the first plurality at a baseline level of protection; setting a second flag to designate a subset of S2L sub-LSPs in the second plurality as protecting respective S2L sub-LSPs in the first plurality at an elevated level of protection; and transmitting the RSVP path message.
Abstract:
A path protection method that includes: establishing a point to multi-point (P2MP) tree spanning from a head node to a plurality of tail nodes, the P2MP tree providing a label switched path (LSP) from the head node to a particular tail node; identifying a first and a second pluralities of source-to-leaf (S2L) sub-LSPs for the LSP included within the P2MP tree, each corresponding pair of S2L sub-LSP in the first and second pluralities are path diverse; setting a first flag in a RSVP path message to designate the second plurality of S2L sub-LSPs as protecting respective S2L sub-LSPs in the first plurality at a baseline level of protection; setting a second flag to designate a subset of S2L sub-LSPs in the second plurality as protecting respective S2L sub-LSPs in the first plurality at an elevated level of protection; and transmitting the RSVP path message.
Abstract:
In one embodiment, certain SRLGs associated with members of a bundle are deemed to be “risk-free SRLGs”, i.e., SRLGs whose failure may not substantially impact the capacity of the bundle to carry traffic in a computer network. In a bandwidth unaware embodiment a number of active members of the bundle is identified for each SRLG, and a bandwidth aware embodiment further specifies an available bandwidth capacity for each SRLG to determine risk-free SRLGs. A backup path or tunnel may be established and utilized to protect a communication link as long as the SRLGs shared are deemed to be risk-free SRLGs.
Abstract:
Local rerouting around a failed component link of a link bundle is provided by immediately substituting one or more other component links of the same link bundle. The substitution of component links is performed at the point of failure without signaling to other nodes. This minimizes signaling traffic particularly when large numbers of LSPs are impacted by a single component link failure. Also, since LSP repair can be accomplished very quickly, traffic disruption is minimized.
Abstract:
Particular embodiments may enable setup and signaling of co-routed and non co-routed label switched paths (LSPs) of a bidirectional packet traffic engineering (TE) tunnel in an unambiguous manner with respect to provisioning of the LSPs/tunnel. A head-end node may set up the bidirectional packet TE tunnel by computing a forward (and possibly a reverse) direction LSP, and then signal the bidirectional TE tunnel utilizing, e.g., extensions to an associated Resource Reservation Protocol (RSVP) signaling method. The extensions to the associated RSVP signaling method include a plurality of additional Association Types of an Extended Association object carried in a RSVP Path message transmitted by the head-end node to the tail-end node over the forward direction LSP, wherein the additional Association Types explicitly identify the provisioning of the forward and reverse direction LSPs as co-routed or non co-routed.