Abstract:
A piezoelectric inertia actuator is disclosed herein, which includes an actuator body, a coupling body defining a receiver, a lock body positioned within the receiver, and a piezo body attached to the coupling body. At least one flexible frame configured to support an engaging body may extend from the piezo body. A spring blade configured to apply a preload force to the engaging body via a decoupling preload body may extend from the coupling body. A tension member may be positioned within the lock body and apply a preload force to the piezo body, thereby creating a net compressive stress therein. The piezoelectric inertia actuator may further include a piezo preload body configured to apply a reaction force to the piezo body in order to maintain the compressive stress therein. The preload applied to the piezo body may be substantially decoupled from the preload applied to the engaging body.
Abstract:
A piezoelectric inertia actuator is disclosed herein, which includes an actuator body, a coupling body defining a receiver, a lock body positioned within the receiver, and a piezo body attached to the coupling body. At least one flexible frame configured to support an engaging body may extend from the piezo body. A spring blade configured to apply a preload force to the engaging body via a decoupling preload body may extend from the coupling body. A tension member may be positioned within the lock body and apply a preload force to the piezo body, thereby creating a net compressive stress therein. The piezoelectric inertia actuator may further include a piezo preload body configured to apply a reaction force to the piezo body in order to maintain the compressive stress therein. The preload applied to the piezo body may be substantially decoupled from the preload applied to the engaging body.
Abstract:
A method for compensating for accuracy errors of a hexapod is disclosed, said hexapod comprising a base, an actuation assembly having six linear translation actuators, a control unit, and a movable carriage comprising a platform connected to the base by means of the actuation assembly. The method includes a measurement step for determining geometry and positioning errors on the hexapod, the measurement step including sub-steps for determining positioning errors of the pivot centers on the carriage and on the base, for determining length errors of the actuators and for measuring positioning errors of the actuators along the path thereof, the compensation method also including a step for calculating, from measurements taken, error compensation values and a step for applying said error compensation values to the control unit of the hexapod, during subsequent use of said hexapod.
Abstract:
A method for compensating for accuracy errors of a hexapod is disclosed, said hexapod comprising a base, an actuation assembly having six linear translation actuators, a control unit, and a movable carriage comprising a platform connected to the base by means of the actuation assembly. The method includes a measurement step for determining geometry and positioning errors on the hexapod, the measurement step including sub-steps for determining positioning errors of the pivot centers on the carriage and on the base, for determining length errors of the actuators and for measuring positioning errors of the actuators along the path thereof, the compensation method also including a step for calculating, from measurements taken, error compensation values and a step for applying said error compensation values to the control unit of the hexapod, during subsequent use of said hexapod.
Abstract:
The device (3) comprises a frame (6), a support piece (7) which is movable with respect to said frame (6) and which exhibits a master side provided with a rigid blade (9), on which may be fixed a first beam (2), and a slave side provided with two rollers, on which can rest an element for holding a second beam (2), and a set of actuators (13), which are able to position the movable support piece (7) in translation along two axes, termed the vertical axis and transverse axis respectively, which are perpendicular to one another and to a longitudinal axis, and in rotation about said longitudinal axis, so as to adjust the position of the first beam, the second beam following the translational motion along said two vertical and transverse axes.
Abstract:
A driving device for driving in rotation a toothed wheel, in particular a turntable, has a worm intended to mesh with the toothed wheel, a motor to drive the worm in rotation, a flexible sleeve that partially surrounds the worm in such a way as to form an assembly described as a worm/sleeve assembly, and a pre-stressing unit. The motor is arranged in a structure that is fitted pivotably relative to the worm/sleeve assembly, and the driving device also has a force transfer unit connecting the motor to the sleeve at a second extremity of the worm.
Abstract:
A driving device for driving in rotation a toothed wheel, in particular a turntable, has a worm intended to mesh with the toothed wheel, a motor to drive the worm in rotation, a flexible sleeve that partially surrounds the worm in such a way as to form an assembly described as a worm/sleeve assembly, and a pre-stressing unit. The motor is arranged in a structure that is fitted pivotably relative to the worm/sleeve assembly, and the driving device also has a force transfer unit connecting the motor to the sleeve at a second extremity of the worm.