Abstract:
The present application provides a method of corner detection and an image processing system for detecting corners in an image. The preferred implementation is in software using enabling and reusable hardware features in the underlying vector processor architecture. The advantage of this combined software and programmable processor datapath hardware is that the same hardware used for the FAST algorithm can also be readily applied to a variety of other computational tasks, not limited to image processing.
Abstract:
The present application discloses a computing device that can provide a low-power, highly capable computing platform for computational imaging. The computing device can include one or more processing units, for example one or more vector processors and one or more hardware accelerators, an intelligent memory fabric, a peripheral device, and a power management module. The computing device can communicate with external devices, such as one or more image sensors, an accelerometer, a gyroscope, or any other suitable sensor devices.
Abstract:
Methods, systems, apparatus and articles of manufacture are disclosed herein to improve image classification with boundary-bitmaps. An example disclosed apparatus includes a silhouette engine to identify a foreground silhouette within the image, generate a bounding box based on borders of the foreground silhouette, and generate an encoded silhouette matrix which identifies cells of a foreground and cells of a background, a convolution cell selector to convolve the encoded silhouette matrix to generate a convoluted bitmap matrix, and a filter cell selector to improve image classification efficiency by identifying eligible blocks of the convoluted bitmap matrix by retaining first respective cells of the convoluted bitmap matrix that satisfy a cell retention threshold, and removing second respective cells of the convoluted bitmap matrix that do not satisfy the cell retention threshold.
Abstract:
The present application provides a method of corner detection and an image processing system for detecting corners in an image. The preferred implementation is in software using enabling and reusable hardware features in the underlying vector processor architecture. The advantage of this combined software and programmable processor datapath hardware is that the same hardware used for the FAST algorithm can also be readily applied to a variety of other computational tasks, not limited to image processing.
Abstract:
The disclosed embodiments include an apparatus implemented in a semiconductor integrated chip. The apparatus is configured to operate a composite function, comprising a first function and a second function, on a first patch of an image. The apparatus includes a first function operator configured to operate the first function on the group of pixel values to provide a first processed group of pixel values. The apparatus also includes a delay system configured to maintain the first processed group of pixel values for a predetermined period of time to provide a delayed processed group of pixel values. The apparatus further includes a second function operator configured to operate a second function on at least a second processed group of pixels and the delayed processed group to determine an output of the composite function.
Abstract:
Systems and methods are provided for image classification using histograms of oriented gradients (HoG) in conjunction with a trainer. The efficiency of the process is greatly increased by first establishing a bitmap which identifies a subset of the pixels in the HoG window as including relevant foreground information, and limiting the HoG calculation and comparison process to only the pixels included in the bitmap.
Abstract:
Systems and methods are provided for rendering of a dual eye-specific display. The system tracks the user's eye movements and/or positions, in some implementations, based on electroencephalography (EEG) of the user, to correctly label the central (foveal) and peripheral (extra-foveal) areas of the display. Foveal data is fully rendered while extra-foveal data is reduced in resolution and, in some implementations, shared between the two displays.
Abstract:
The present application relates generally to a parallel processing device. The parallel processing device can include a plurality of processing elements, a memory subsystem, and an interconnect system. The memory subsystem can include a plurality of memory slices, at least one of which is associated with one of the plurality of processing elements and comprises a plurality of random access memory (RAM) tiles, each tile having individual read and write ports. The interconnect system is configured to couple the plurality of processing elements and the memory subsystem. The interconnect system includes a local interconnect and a global interconnect.
Abstract:
The present application discloses a computing device that can provide a low-power, highly capable computing platform for computational imaging. The computing device can include one or more processing units, for example one or more vector processors and one or more hardware accelerators, an intelligent memory fabric, a peripheral device, and a power management module. The computing device can communicate with external devices, such as one or more image sensors, an accelerometer, a gyroscope, or any other suitable sensor devices.
Abstract:
The present application relates generally to a parallel processing device. The parallel processing device can include a plurality of processing elements, a memory subsystem, and an interconnect system. The memory subsystem can include a plurality of memory slices, at least one of which is associated with one of the plurality of processing elements and comprises a plurality of random access memory (RAM) tiles, each tile having individual read and write ports. The interconnect system is configured to couple the plurality of processing elements and the memory subsystem. The interconnect system includes a local interconnect and a global interconnect.