Abstract:
A photocathode can include a body fabricated of a wide bandgap semiconductor material, a metal layer, and an alkali halide photocathode emitter. The body may have a thickness of less than 100 nm and the alkali halide photocathode may have a thickness less than 10 nm. The photocathode can be illuminated with a dual wavelength scheme.
Abstract:
A flat top laser beam is used to generate an electron beam with a photocathode that can include an alkali halide. The flat top profile can be generated using an optical array. The laser beam can be split into multiple laser beams or beamlets, each of which can have the flat top profile. A phosphor screen can be imaged to determine space charge effects or electron energy of the electron beam.
Abstract:
A method for producing a laser sustained plasma light by directing at least one laser into a gas volume and igniting a plasma that produces a light. Heated portions of the gas volume are removed from the plasma and cooled. The cooled portions of the gas volume are returned to the plasma in a laminar flow. The light is collected with a reflector and provided to a desired location.
Abstract:
An apparatus for use with extreme ultraviolet (EUV) light comprising A) a duct having a first end opening, a second end opening and an intermediate opening intermediate the first end opening the second end opening, B) an optical component disposed to receive EUV light from the second end opening or to send light through the second end opening, and C) a source of low pressure gas at a first pressure to flow through the duct, the gas having a high transmission of EUV light, fluidly coupled to the intermediate opening. In addition to or rather than gas flow the apparatus may have A) a low pressure gas with a heat control unit thermally coupled. to at least one of the duct and the optical component and/or B) a voltage device to generate voltage between a first portion and a second portion of the duet with a grounded insulative portion therebetween.
Abstract:
Electron source designs are disclosed. The emitter structure, which may be silicon, has a layer on it. The layer may be graphene or a photoemissive material, such as an alkali halide. An additional layer between the emitter structure and the layer or a protective layer on the layer can be included. Methods of operation and methods of manufacturing also are disclosed.
Abstract:
A photocathode structure, which can include an alkali halide, has a protective film on an exterior surface of the photocathode structure. The protective film includes ruthenium. This protective film can be, for example, ruthenium or an alloy of ruthenium and platinum. The protective film can have a thickness from 1 nm to 20 nm. The photocathode structure can be used in an electron beam tool like a scanning electron microscope.
Abstract:
An apparatus for producing a high purity stream of ozone including a reaction chamber having an inlet and an outlet, a gaseous feed stream having a first purified component and an ultraviolet source. The gaseous feed stream enters the reaction chamber through the inlet, the first purified component includes oxygen, the ultraviolet source forms ozone from the oxygen, and the ozone exits the reaction chamber through the outlet.
Abstract:
Disclosed herein are optical elements and methods for making the same. Such optical elements may comprise a first layer disposed on a substrate, a second layer disposed on the first layer, a terminal layer disposed on the second layer, and a cap layer disposed on the terminal layer. The cap layer may comprise boron, boron nitride, or boron carbide. Such optical elements may be made using a method comprising depositing a first layer using vapor deposition such that the first layer is disposed on a substrate, depositing a second layer using vapor deposition such that the second layer is disposed on the first layer, depositing a terminal layer using vapor deposition such that the terminal layer is disposed on the second layer, and depositing a cap layer comprising boron, boron nitride, or boron carbide using vapor deposition such that the cap layer is disposed on the terminal layer.
Abstract:
A photocathode can include a body fabricated of a wide bandgap semiconductor material, a metal layer, and an alkali halide photocathode emitter. The body may have a thickness of less than 100 nm and the alkali halide photocathode may have a thickness less than 10 nm. The photocathode can be illuminated with a dual wavelength scheme.
Abstract:
A photocathode structure, which can include one or more of Cs2Te, CsKTe, CsI, CsBr, GaAs, GaN, InSb, CsKSb, or a metal, has a protective film on an exterior surface. The protective film includes one or more of ruthenium, nickel, platinum, chromium, copper, gold, silver, aluminum, or an alloy thereof. The protective film can have a thickness from 1 nm to 10 nm. The photocathode structure can be used in an electron beam tool like a scanning electron microscope.