Abstract:
Examples include techniques to collect crash data for a computing system following a catastrophic error. Examples include a management controller gathering error information from components of a computing system that includes a central processing unit (CPU) coupled with one or more companion dice following the catastrophic error. The management controller to gather the error information via a communication link coupled between the management controller, the CPU and the one or more companion dice.
Abstract:
Systems and methods of implementing server architectures that can facilitate the servicing of memory components in computer systems. The systems and methods employ nonvolatile memory/storage modules that include nonvolatile memory (NVM) that can be used for system memory and mass storage, as well as firmware memory. The respective NVM/storage modules can be received in front or rear-loading bays of the computer systems. The systems and methods further employ single, dual, or quad socket processors, in which each processor is communicably coupled to at least some of the NVM/storage modules disposed in the front or rear-loading bays by one or more memory and/or input/output (I/O) channels. By employing NVM/storage modules that can be received in front or rear-loading bays of computer systems, the systems and methods provide memory component serviceability heretofore unachievable in computer systems implementing conventional server architectures.
Abstract:
Systems and methods of implementing server architectures that can facilitate the servicing of memory components in computer systems. The systems and methods employ nonvolatile memory/storage modules that include nonvolatile memory (NVM) that can be used for system memory and mass storage, as well as firmware memory. The respective NVM/storage modules can be received in front or rear-loading bays of the computer systems. The systems and methods further employ single, dual, or quad socket processors, in which each processor is communicably coupled to at least some of the NVM/storage modules disposed in the front or rear-loading bays by one or more memory and/or input/output (I/O) channels. By employing NVM/storage modules that can be received in front or rear-loading bays of computer systems, the systems and methods provide memory component serviceability heretofore unachievable in computer systems implementing conventional server architectures.
Abstract:
Examples may include chipsets, processor circuits, and a system including chipsets and processor circuits. The chipsets and processor circuits can be coupled together via side band interconnect. The chipsets and processor circuits can be coupled together dynamically, during runtime using the side band interconnects. A chipset can send control signals for other chipsets and/or receive control signals from processor circuits via the side band links to dynamically coordinate the chipsets and processor circuits into systems.
Abstract:
Methods, apparatuses, and systems may provide a sensor to monitor a power consumption of a non-volatile random access memory (RAM) and a volatile RAM. A switch, connected to an output of the sensor, controls power to the non-volatile RAM, and a voltage regulator regulates a voltage of the non-volatile RAM and the volatile RAM. One or more memory slots receive the non-volatile RAM and the volatile RAM, and a processor receives information from the sensor, and controls the voltage regulator based on the received information. The voltage regulator comprises a plurality of registers to store power consumption information of the non-volatile RAM and the volatile RAM.
Abstract:
A processor module comprises an integrated circuit component attached to a power interposer. One or more voltage regulator modules attach to the power interposer via interconnect sockets and the power interposer routes regulated power signals generated by the voltage regulator modules to the integrated circuit component. Input power signals are provided to the voltage regulator from the system board via straight pins, a cable connector, or another type of connector. The integrated circuit component's I/O signals are routed through the power interposer to a system board via a socket located between the power interposer and the socket. Not having to route regulated power signals from a system board through a socket to an integrated circuit component can result in a system board with fewer layers, which can reduce overall system cost, as well as creating more area available in the remaining layers for I/O signal entry to the socket.
Abstract:
Embodiments disclosed herein relate to coordinated system boot and reset flows and improve reliability, availability, and serviceability (RAS) among multiple chipsets. In an example, a system includes a master chipset having multiple interfaces, each interface to connect to one of a processor and a chipset, at least one processor connected to the master chipset, at least one non-master chipset connected to the master chipset, and a sideband messaging channel connecting the master chipset and the non-master chipsets, wherein the master chipset is to probe a subset of its multiple interfaces to discover a topology of connected processors and non-master chipsets, and use the sideband messaging channel to coordinate a synchronized boot flow.
Abstract:
Examples may include chipsets, processor circuits, and a system including chipsets and processor circuits. The chipsets and processor circuits can be coupled together via side band interconnect. The chipsets and processor circuits can be coupled together dynamically, during runtime using the side band interconnects. A chipset can send control signals for other chipsets and/or receive control signals from processor circuits via the side band links to dynamically coordinate the chipsets and processor circuits into systems.