Defending neural networks by randomizing model weights

    公开(公告)号:US11568211B2

    公开(公告)日:2023-01-31

    申请号:US16233700

    申请日:2018-12-27

    Abstract: The present disclosure is directed to systems and methods for the selective introduction of low-level pseudo-random noise into at least a portion of the weights used in a neural network model to increase the robustness of the neural network and provide a stochastic transformation defense against perturbation type attacks. Random number generation circuitry provides a plurality of pseudo-random values. Combiner circuitry combines the pseudo-random values with a defined number of least significant bits/digits in at least some of the weights used to provide a neural network model implemented by neural network circuitry. In some instances, selection circuitry selects pseudo-random values for combination with the network weights based on a defined pseudo-random value probability distribution.

    Secure public cloud using extended paging and memory integrity

    公开(公告)号:US11520611B2

    公开(公告)日:2022-12-06

    申请号:US16370924

    申请日:2019-03-30

    Abstract: A host Virtual Machine Monitor (VMM) operates “blindly,” without the host VMM having the ability to access data within a guest virtual machine (VM) or the ability to access directly control structures that control execution flow of the guest VM. Guest VMs execute within a protected region of memory (called a key domain) that even the host VMM cannot access. Virtualization data structures that pertain to the execution state (e.g., a Virtual Machine Control Structure (VMCS)) and memory mappings (e.g., Extended Page Tables (EPTs)) of the guest VM are also located in the protected memory region and are also encrypted with the key domain key. The host VMM and other guest VMs, which do not possess the key domain key for other key domains, cannot directly modify these control structures nor access the protected memory region. The host VMM, however, using VMPageIn and VMPageOut instructions, can build virtual machines in key domains and page VM pages in and out of key domains.

    Side channel attack prevention by maintaining architectural state consistency

    公开(公告)号:US11216556B2

    公开(公告)日:2022-01-04

    申请号:US16222785

    申请日:2018-12-17

    Abstract: The present disclosure is directed to systems and methods that maintain consistency between a system architectural state and a microarchitectural state in the system cache circuitry to prevent a side-channel attack from accessing secret information. Speculative execution of one or more instructions by the processor circuitry causes memory management circuitry to transition the cache circuitry from a first microarchitectural state to a second microarchitectural state. The memory management circuitry maintains the cache circuitry in the second microarchitectural state in response to a successful completion and/or retirement of the speculatively executed instruction. The memory management circuitry reverts the cache circuitry from the second microarchitectural state to the first microarchitectural state in response to an unsuccessful completion, flushing, and/or retirement of the speculatively executed instruction.

    SECURE PUBLIC CLOUD USING EXTENDED PAGING AND MEMORY INTEGRITY

    公开(公告)号:US20200057664A1

    公开(公告)日:2020-02-20

    申请号:US16370924

    申请日:2019-03-30

    Abstract: A host Virtual Machine Monitor (VMM) operates “blindly,” without the host VMM having the ability to access data within a guest virtual machine (VM) or the ability to access directly control structures that control execution flow of the guest VM. Guest VMs execute within a protected region of memory (called a key domain) that even the host VMM cannot access. Virtualization data structures that pertain to the execution state (e.g., a Virtual Machine Control Structure (VMCS)) and memory mappings (e.g., Extended Page Tables (EPTs)) of the guest VM are also located in the protected memory region and are also encrypted with the key domain key. The host VMM and other guest VMs, which do not possess the key domain key for other key domains, cannot directly modify these control structures nor access the protected memory region. The host VMM, however, using VMPageIn and VMPageOut instructions, can build virtual machines in key domains and page VM pages in and out of key domains.

    Methods and arrangements for implicit integrity

    公开(公告)号:US10929527B2

    公开(公告)日:2021-02-23

    申请号:US15848962

    申请日:2017-12-20

    Abstract: Logic may implement implicit integrity techniques to maintain integrity of data. Logic may perform operations on data stored in main memory, cache, flash, data storage, or any other memory. Logic may perform more than one pattern check to determine repetitions of entities within the data. Logic may determine entropy index values and/or Boolean values and/or may compare the results to threshold values to determine if a data unit is valid. Logic may merge a tag with the data unit without expanding the data unit to create an encoded data unit. Logic may decode and process the encoded data unit to determine the data unit and the tag. Logic may determine value histograms for two or more entities, determine a sum of repetitions of the two or more entities, and compare the sum to a threshold value. Logic may determine that a data unit is valid or is corrupted.

Patent Agency Ranking