Abstract:
Systems and techniques are provided for aggregation of asynchronous trust outcomes in a mobile device. Trust levels may be determined from the signals. Each trust level may be determined independently of any other trust level. Each trust level may be determined based on applying to the signals heuristics, mathematical optimization, decisions trees, machine learning systems, or artificial intelligence systems. An aggregated trust outcome may be determined by aggregating the trust levels. Aggregating the trust levels may include applying heuristics, mathematical optimization, decisions trees, machine learning systems, or artificial intelligence systems to the trust levels, and wherein the aggregated trust outcome; and sending the aggregated trust outcome to be implemented by the enabling, disabling, or relaxing of at least one security measure based on the aggregated trust outcome.
Abstract:
Systems and techniques are provided for dynamic authentication using distributed mobile sensors. According to an embodiment of the disclosed subject matter, signals may be received from sensors. Some of the sensors may be located on a remote computing device. Heuristics, mathematical optimization, decisions trees, machine learning systems, or artificial intelligence systems may be applied to the signals from sensors to determine a trust outcome. The trust outcome may be sent to be implemented by the enabling, disabling, or relaxing of a security measure based on the trust outcome.
Abstract:
Systems, device and techniques are disclosed for implementing a security configuration change based on one or more base events and a current security configuration. An inference module may identify a security configuration change based on receiving base events from a state storage/event listener and analyzing the base events to determine if a current security configuration is optimal given the base events.
Abstract:
Systems, device and techniques are disclosed for implementing a security configuration change based on one or more base events and a current security configuration. An inference module may identify a security configuration change based on receiving base events from a state storage/event listener and analyzing the base events to determine if a current security configuration is optimal given the base events.
Abstract:
Systems, device and techniques are disclosed for implementing a security configuration change based on one or more base events and a current security configuration. An inference module may identify a security configuration change based on receiving base events from a state storage/event listener and analyzing the base events to determine if a current security configuration is optimal given the base events.