Abstract:
A method includes obtaining spectral computed tomography (CT) information via an acquisition unit having an X-ray source and a CT detector. The method also includes, generating, with one or more processing units, using at least one image transform, a first basis image and a second basis image using the spectral CT information. Further, the method includes performing, with the one or more processing units, guided processing on the second basis image using the first basis image as a guide to provide a modified second basis image. Also, the method includes performing at least one inverse image transform using the first basis image and the modified second basis image to generate at least one modified image.
Abstract:
The use of the channelized preconditioners in iterative reconstruction is disclosed. In certain embodiments, different channels correspond to different frequency sub-bands and the output of the different channels can be combined to update an image estimate used in the iterative reconstruction process. While individual channels may be relatively simple, the combined channels can represent complex spatial variant operations. The use of channelized preconditioners allows empirical adjustment of individual channels.
Abstract:
Methods and systems for model-based image processing are provided. One method includes selecting at least one reference image from a plurality of reference images, partitioning the at least one reference image into a plurality of patches, generating a probability distribution for each of the patches, and generating a model of a probability distribution for the at least one reference image using the probability distributions for each of the patches.
Abstract:
The present approach relates to the training of a machine learning algorithm for image generation and use of such a trained algorithm for image generation. Training the machine learning algorithm may involve using multiple images produced from a single set of tomographic projection or image data (such as a simple reconstruction and a computationally intensive reconstruction), where one image is the target image that exhibits the desired characteristics for the final result. The trained machine learning algorithm may be used to generate a final image corresponding to a computationally intensive algorithm from an input image generated using a less computationally intensive algorithm.
Abstract:
A method includes obtaining spectral computed tomography (CT) information via an acquisition unit having an X-ray source and a CT detector. The method also includes, generating, with one or more processing units, using at least one image transform, a first basis image and a second basis image using the spectral CT information. Further, the method includes performing, with the one or more processing units, guided processing on the second basis image using the first basis image as a guide to provide a modified second basis image. Also, the method includes performing at least one inverse image transform using the first basis image and the modified second basis image to generate at least one modified image.
Abstract:
A method includes obtaining spectral computed tomography (CT) information via an acquisition unit having an X-ray source and a CT detector. The method also includes, generating, with one or more processing units, using at least one image transform, a first basis image and a second basis image using the spectral CT information. Further, the method includes performing, with the one or more processing units, guided processing on the second basis image using the first basis image as a guide to provide a modified second basis image. Also, the method includes performing at least one inverse image transform using the first basis image and the modified second basis image to generate at least one modified image.
Abstract:
The use of the channelized preconditioners in iterative reconstruction is disclosed. In certain embodiments, different channels correspond to different frequency sub-bands and the output of the different channels can be combined to update an image estimate used in the iterative reconstruction process. While individual channels may be relatively simple, the combined channels can represent complex spatial variant operations. The use of channelized preconditioners allows empirical adjustment of individual channels.
Abstract:
A framework for an iterative reconstruction algorithm is described which combines two or more of an ordered subset method, a preconditioner method, and a nested loop method. In one type of implementation a nested loop (NL) structure is employed where the inner loop sub-problems are solved using ordered subset (OS) methods. The inner loop may be solved using OS and a preconditioner method. In other implementations, the inner loop problems are created by augmented Lagrangian methods and then solved using OS method.
Abstract:
A system and method include acquisition of projection data from a scanned object, the set of projection data comprising a plurality of projection measurements. The system and method also include calculation of a set of modified statistical weights from the projection data, wherein a respective modified statistical weight of the set of modified statistical weights comprises a deviation from an inverse variance of a corresponding projection measurement of the projection data. The system and method further include reconstruction of an image of the scanned object using the set of modified statistical weights as coefficients in an iterative reconstruction algorithm.
Abstract:
An iterative reconstruction approach is provided that allows the use of differing weights in pixels or larger sub-regions in the reconstructed image. By way of example, the relative significance of each projection measurement may be determined based on both the measurement position and the location of the reconstructed pixel. Computationally, the significance of each projection based on these two factors is represented by a weight factor employed in the algorithmic computation.