Abstract:
A method of casting a refractory article. The method includes providing a mold formed from a slurry composition comprising plaster and fibers and adding a refractory composition to the mold. The method also includes allowing the refractory composition to set. The refractory composition comprises colloidal silica.
Abstract:
A method of forming a solar device. The method includes providing one or more photovoltaic cells having a front surface region and a back surface region. The method includes providing a first conductor element having a first side operably coupled to a first region of the front surface region of the one or more photovoltaic cells and a second side. In a specific embodiment, the conductor element includes a first anisotropic conducting tape material or a first conducting tape material, the first conducting element having a first thickness, a first length, and a first width. The method performs a bonding process to cause the first conductor element to conduct electric current in a first selected direction.
Abstract:
A slurry composition for a mold and method of use thereof. The slurry composition includes about 45-80% by weight alumina, about 10-30% by weight silicon carbide, and about 10-50% by weight colloidal silica. In one aspect, the alumina component comprises a material selected from the group consisting of brown fused alumina, white fused alumina, tabular alumina, calcined alumina, and mixtures thereof. In another aspect, the composition includes fumed silica at 2-5% by weight. The composition may also include a setting agent at 0.05-2% by weight.
Abstract:
A flip chip ball grid array package includes a thin die having a die thickness reduced from a wafer thickness to reduce mismatch of a coefficient of thermal expansion between the thin die and a substrate; a plurality of thin film layers formed on the thin die wherein each of the plurality of thin film layers has a coefficient of thermal expansion that is greater than that of the thin die and is less than that of the substrate; and a plurality of wafer bumps formed on the thin die for making electrical contact between the thin die and the substrate.
Abstract:
A refractory system includes a first set of components and a colloidal silica binder. The first set of components includes alumina and zirconia. The colloidal silica binder is at 5 wt % to 20 wt % of the dry weight of the first set of components. The refractory composition comprises 10 wt % to 45 wt % alumina, at least 35 wt % zirconia, and at least 20 wt % silica.
Abstract:
A method of casting a refractory article. The method includes providing a mold formed from a slurry composition comprising plaster and fibers and adding a refractory composition to the mold. The method also includes allowing the refractory composition to set. The refractory composition comprises colloidal silica.
Abstract:
A system and method increase yield from semiconductor wafer electroplating. The aspects include a semiconductor wafer, the semiconductor wafer comprising a plurality of die areas. A plating ring for holding the semiconductor wafer in position during electroplating is also included, the plating ring substantially surrounding a circumference of the semiconductor wafer and having a width that varies in order to avoid overlap near edge die areas of the semiconductor wafer.
Abstract:
A system and method increase yield from semiconductor wafer electroplating. The aspects include a semiconductor wafer, the semiconductor wafer comprising a plurality of die areas. A plating ring for holding the semiconductor wafer in position during electroplating is also included, the plating ring substantially surrounding a circumference of the semiconductor wafer and having a width that varies in order to avoid overlap near edge die areas of the semiconductor wafer.
Abstract:
A method and system for manufacturing an integrated concentrator photovoltaic device is disclosed. In an embodiment, the invention includes a one step process using a sheet of coupling material provided in a pre-arranged pattern to couple an array of photovoltaic members to an array of respective optical concentrating members. In another embodiment, the invention includes an integrated concentrator photovoltaic device made by coupling a photovoltaic member and an optical concentrating member together through an encapsulant or coupling layer formed from a sheet member of coupling materials possessing a pre-arranged pattern
Abstract:
A fuse formed in an integrated circuit die includes: a length of an electrically conductive material for connecting two points of a circuit on the integrated circuit die and for selectively breaking the connection by a pulse of electrical current sufficient to dissolve a portion of the electrically conductive material; a passivation layer formed over the length of electrically conductive material; and a protective coating formed over a portion of the length of electrically conductive material in addition to the passivation layer to avoid damage to the fuse from an etchant during a bumping process.