Abstract:
A voice call network node communicates advertisements to user terminals of a telecommunications system. The voice call network node includes a voice call handling component and an advertisement insertion component. The voice call handling component responds to a voice call from a caller user terminal by identifying characteristics of the caller user terminal and/or the callee user terminal. The advertisement insertion component communicates voice call profile information through a network to an advertisement service offering node. The voice call profile information identifies characteristics of the caller user terminal and/or the callee user terminal The advertisement insertion component also receives an advertisement from the advertisement service offering node responsive to the communicated voice call profile information, and communicates the advertisement to the caller user terminal and/or to the callee user terminal Related advertisement service offering nodes and user terminals are disclosed.
Abstract:
A method of managing wireless transmissions from a mobile handset includes determining whether the mobile handset is a source of a Random Access Channel (RACH) overload in the wireless network and, upon determining that the mobile handset is a source of the RACH overload, configuring the mobile handset to replace usage of a first RACH resource causing the RACH overload with usage of a second RACH resource specified by the processor.
Abstract:
In one of its aspects the technology disclosed herein concerns a method of operating a receiver. The method comprises performing symbol detection by (1) receiving a frequency-domain signal that comprises contribution from time-domain symbols transmitted from one or more transmit antennas; (2) generating a transformation matrix and a triangular matrix based on a frequency domain channel response; (3) using the transformation matrix to transform the received frequency-domain signal to obtain a transformed frequency-domain signal; and (4) performing symbol detection by performing plural stages of detection, each stage of detection using elements of the transformed frequency-domain received signal associated with the detection stage.
Abstract:
A system and method to substantially prevent Denial of Service (DoS) attacks due to Random Access Channel (RACH) overload in cellular wireless networks. Once a mobile handset is identified to cause or contribute significantly to a RACH overload of the cell, the system sends a special System Information Block (SIB) message targeted to that mobile handset and instructing it to redirect its RACH signaling to a separate RACH/PRACH (Physical Random Access Channel) resource or to a small part of the current RACH/PRACH resource. This allows most or all of the regular RACH/PRACH resource from being overloaded by a single user or a group of users. The use of a separate RACH/PRACH resource such as frequency, preamble sequence, and/or radio subframe access slot to “absorb” high volume RACH signaling traffic from a small number of malicious/defective mobile handsets substantially prevents the signaling DoS attacks in the wireless network and makes it more robust to such attacks.
Abstract:
In one of its aspects the technology disclosed herein concerns a method of operating a receiver. The method comprises performing symbol detection by (1) receiving a frequency-domain signal that comprises contribution from time-domain symbols transmitted from one or more transmit antennas; (2) generating a transformation matrix and a triangular matrix based on a frequency domain channel response; (3) using the transformation matrix to transform the received frequency-domain signal to obtain a transformed frequency-domain signal; and (4) performing symbol detection by performing plural stages of detection, each stage of detection using elements of the transformed frequency-domain received signal associated with the detection stage.
Abstract:
Compressive sampling is used to generate pilot symbols to be transmitted over an array of antennas in a MIMO wireless communications device. A pilot symbol is transmitted over the array of antennas according to a spatially randomized antenna transmission function that randomly changes across the array of antennas. The randomized antenna transmission function may randomly select/deselect antennas and/or randomly change amplitude and/or phase of the pilot symbol transmission. Channel estimates can be constructed at a receiver based on the spatially randomized pilot symbols that were transmitted.
Abstract:
Methods may be provided to transmit data from a wireless terminal operating in a radio access network. For example, sampling rate conversion may be performed on a serial stream of modulation symbols to generate sampling rate converted symbols, and the sampling rate converted symbols may be transmitted over a wireless channel to a node of the radio access network. Related terminals are also discussed.
Abstract:
A method and an arrangement (600) in a user equipment (140) for quantizing channel state information in a coordinated multi-point transmission radio communication system (100). A dominant path is between the user equipment (140) and a first network node (110) and a non-dominant path is between the user equipment (140) and a second network node (120, 130). A ratio of the non-dominant path channel response, such as fast fading, to the dominant path channel response is quantized by using a codebook disclosed herein. A method and an arrangement (400) for generating a codebook by applying a log squared error distortion measure in an iterative algorithm. A method and an arrangement (900) in a user equipment (140) for allocating available bits among at least two quantized ratios in a channel state information feedback procedure. The bits are allocated by means of selecting (270) at least one codebook based on statistic properties, such as path gain, of the non-dominant path.
Abstract:
Multi-antenna transmission control presented herein involves generating a set of virtual channel realizations at the transmitter that shares the same second-order statistics as the actual channel realizations observed for a targeted receiver. By making the control-related quantities of interest at the transmitter depend on the long-term statistics of the channel, the actual channel realizations are not needed for transmission control, e.g., for accurate Multiple-Input-Multiple-Output (MIMO) preceding. As such, the use of virtual channel realizations enables transmission control that approaches the “closed-loop” channel capacity that would be provided by full feedback of the (instantaneous) actual channel realizations, without requiring the overhead signaling burden that attends full feedback.
Abstract:
Systems and methods are disclosed for efficient operation of wireless access nodes in a dense deployment of wireless access nodes in a cellular communication network. In general, the dense deployment of wireless access nodes includes multiple wireless access nodes in a service area. The service area is preferably, but not necessarily, a low-load service area. As used herein, a low-load service area is an area within an overall service area of the dense deployment of wireless access nodes in which all wireless access nodes are not needed to provide a desired data capacity. Overlapping radio coverage areas of the wireless access nodes in, or serving, the service area are leveraged to enable efficient operation of the wireless access nodes in the service area.