Abstract:
The invention relates to aqueous polyurethane dispersions that are curable with UV radiation. The polyurethanes are chain-extended with aromatic, cycloaliphatic or aliphatic diamine compound and cross-linked with aliphatic triamine compound. The polyurethanes are useful dispersions for coating various substrates. The use of the invented dispersions results in high hardness, very good flexibility and good chemical resistance in both clear coats and pigmented coatings before and after UV curing combined with very good adhesion to different substrates.
Abstract:
The invention relates to aqueous polyurethane dispersions that are curable with UV radiation. The polyurethanes are chain-extended with aromatic, cycloaliphatic or aliphatic diamine compound and cross-linked with aliphatic triamine compound. The polyurethanes are useful dispersions for coating various substrates. The use of the invented dispersions results in high hardness, very good flexibility and good chemical resistance in both clear coats and pigmented coatings before and after UV curing combined with very good adhesion to different substrates.
Abstract:
The present invention relates to the use of aqueous multistage polymer dispersions obtainable by free-radically initiated aqueous emulsion polymerization, having a soft phase and a hard phase and having a hard-to-soft stage ratio of 25% to 95% by weight to 75% to 5% by weight, the glass transition temperature (Tg) of the soft phase, as first stage, being −30 to 0° C. and that of the hard phase, as second stage, being 20 to 60° C., comprising at least one monomer of the general formula I in which the variables have the following definitions: n=0 to 2, R1, R2, R3=independently of one another hydrogen or methyl group, X═O or NH, Y═H, alkali metal or NH4, to coat metal sheets.
Abstract:
The present invention relates to aqueous polyurethane dispersions that are curable with UV radiation, to a process for preparing them, and to the use thereof.
Abstract:
The present invention provides the use of aqueous polymer dispersions comprising (a) at least two monomers M1 having a glass transition temperature ≥25° C., (b) at least two monomers M2 having a glass transition temperature
Abstract:
The present invention provides aqueous emulsion polymers comprising (A) monomers A (B) at least one (meth)acrylate with olefinically unsaturated side groups (monomers B), and (C) at least one photoinitiator, and also the use thereof in coating materials, more particularly in exterior architectural paints.
Abstract:
The present invention relates to the use of aqueous multistage polymer dispersions obtainable by free-radically initiated aqueous emulsion polymerization, having a soft phase and a hard phase and having a hard-to-soft stage ratio of 25% to 95% by weight to 75% to 5% by weight, the glass transition temperature (Tg) of the soft phase, as first stage, being −30 to 0° C. and that of the hard phase, as second stage, being 20 to 60° C., comprising at least one monomer of the general formula I in which the variables have the following definitions: n=0 to 2, R1, R2, R3=independently of one another hydrogen or methyl group, X═O or NH, Y═H, alkali metal or NH4, to coat metal sheets.
Abstract:
Mixture comprising a) at least one polyisocyanate, b) at least one reaction product of at least one polyisocyanate b1) with at least one compound b2) having at least one hydrophilic group which is not reactive toward isocyanate (group A) and precisely one group which is reactive toward isocyanate (group B) and c) dioxolane.
Abstract:
Binder systems for high-gloss coatings and processes for producing them are provided, where the binder systems are prepared by preparing an aqueous polymer dispersion by radically initiated aqueous emulsion polymerization using defined first and second polymerization stages wherein the weight ratio of the sum of the total amounts of first polymerization stage monomers A1 to C1 (total monomer amount 1) to the sum of the total amounts of second polymerization stage monomers A2 to C2 (total monomer amount 2) is in the range 5:95 to 70:30, the amount of chain transfer agent in the second polymerization stage is selected such that the resulting overall polymer has a weight-average molecular weight of ≥15 000 and ≤50 000 g/mol, and the amount of the dispersing assistant is ≤3.0 wt %, based on the sum of total monomer amount 1 and total monomer amount 2 (total monomer amount).
Abstract:
Disclosed are urethane (meth)acrylates obtainable by implementation of the following steps: (r1) partially reacting an alkoxylated polyol (A) with (meth)acrylic acid (B) in the presence of at least one esterification catalyst (C) and at least one polymerization inhibitor (D) and also, optionally, of a solvent (E) that forms an azeotrope with water, (o1) optionally removing at least some of the water formed in r1) from the reaction mixture, it being possible for o1) to take place during and/or after r1), (o2) optionally neutralizing the reaction mixture, (o3) if a solvent (E) has been used, optionally removing this solvent by distillation and/or (o4) stripping with a gas which is inert under the reaction conditions, (r2) reacting the reaction mixture obtained after the last of the above reaction steps with a compound (G) containing at least two epoxy groups, optionally in the presence of a catalyst (H), and (r3) reacting the reaction mixture from (r2) with at least one polyisocyanate (J) and at least one hydroxyalkyl (meth)acrylate (K) and optionally with at least one further compound (M) which contains one or more isocyanate-reactive groups, in the presence of a catalyst (L), with the proviso that the catalyst (L) used in step (r3) is a bismuth-containing catalyst.