Abstract:
A method of determining a measurement sequence for an inspection tool inspecting a structure generated by a lithographic process performed by a lithographic system is presented, the method including deriving a model for the lithographic process as performed by the lithographic system, the model including a relationship between a set of system variables describing the lithographic system and an output variable representing the structure resulting of the lithographic process, determining an observability of one or more system variables in the output variable, and determining the measurement sequence for the inspection tool, based on the observability.
Abstract:
In a lithographic process, product units such as semiconductor wafers are subjected to lithographic patterning operations and chemical and physical processing operations. Alignment data or other measurements are made at stages during the performance of the process to obtain object data representing positional deviation or other parameters measured at points spatially distributed across each unit. This object data is used to obtain diagnostic information by performing a multivariate analysis to decompose a set of vectors representing the units in the multidimensional space into one or more component vectors. Diagnostic information about the industrial process is extracted using the component vectors. The performance of the industrial process for subsequent product units can be controlled based on the extracted diagnostic information.
Abstract:
A defect prediction method for a device manufacturing process involving production substrates processed by a lithographic apparatus, the method including training a classification model using a training set including measured or determined values of a process parameter associated with the production substrates processed by the device manufacturing process and an indication regarding existence of defects associated with the production substrates processed in the device manufacturing process under the values of the process parameter, and producing an output from the classification model that indicates a prediction of a defect for a substrate.
Abstract:
A method including: obtaining a logistic mathematical model predicting the formation of a physical structure created using a patterning process; evaluating the logistic mathematical model to predict formation of a part of the physical structure and generate an output; and adapting, based on the output, an aspect of the patterning process.
Abstract:
Disclosed is a method of measuring a parameter of a lithographic process, and associated inspection apparatus. The method comprises measuring at least two target structures on a substrate using a plurality of different illumination conditions, the target structures having deliberate overlay biases; to obtain for each target structure an asymmetry measurement representing an overall asymmetry that includes contributions due to (i) the deliberate overlay biases, (ii) an overlay error during forming of the target structure and (iii) any feature asymmetry. A regression analysis is performed on the asymmetry measurement data by fitting a linear regression model to a planar representation of asymmetry measurements for one target structure against asymmetry measurements for another target structure, the linear regression model not necessarily being fitted through an origin of the planar representation. The overlay error can then be determined from a gradient described by the linear regression model.
Abstract:
A method for determining overlay error includes measuring asymmetry of radiation reflected from each of a plurality of targets on a substrate. The plurality of targets include a predetermined overlay offset. The method also includes comparing the measured asymmetry of the radiation reflected from each of the plurality of targets to the corresponding predetermined overlay offset of the respective target. Additionally, the method includes determining the overlay error of a point on the substrate as a function of measured asymmetry reflected from the point. The function is determined by fitting a polynomial or a Fourier series to a comparison of the measured asymmetry of the radiation reflected from each of the plurality of targets to the corresponding predetermined overlay offset of the respective target. The function limits an effect of linearity error.
Abstract:
In a lithographic process, product units such as semiconductor wafers are subjected to lithographic patterning operations and chemical and physical processing operations. Alignment data or other measurements are made at stages during the performance of the process to obtain object data representing positional deviation or other parameters measured at points spatially distributed across each unit. This object data is used to obtain diagnostic information by performing a multivariate analysis to decompose a set of vectors representing the units in the multidimensional space into one or more component vectors. Diagnostic information about the industrial process is extracted using the component vectors. The performance of the industrial process for subsequent product units can be controlled based on the extracted diagnostic information.
Abstract:
A method involving obtaining a resist deformation model for simulating a deformation process of a pattern in resist, the resist deformation model being a fluid dynamics model configured to simulate an intrafluid force acting on the resist, performing, using the resist deformation model, a computer simulation of the deformation process to obtain a deformation of the developed resist pattern for an input pattern to the resist deformation model, and producing electronic data representing the deformation of the developed resist pattern for the input pattern.
Abstract:
Methods of measuring variation across multiple instances of a pattern on a substrate or substrates after a step in a device manufacturing process are disclosed. In one arrangement, data representing a set of images is received. Each image represents a different instance of the pattern, wherein the pattern includes a plurality of pattern elements. The set of images are registered relative to each other to superimpose the instances of the pattern. The registration includes applying different weightings to two or more of the plurality of pattern elements, wherein the weightings control the extent to which each pattern element contributes to the registration of the set of images and each weighting is based on an expected variation of the pattern element to which the weighting is applied. Variation in the pattern is measured using the registered set of images.
Abstract:
A method including obtaining an image of a plurality of structures on a substrate, wherein each of the plurality of structures is formed onto the substrate by transferring a corresponding pattern of a design layout; obtaining, from the image, a displacement for each of the structures with respect to a reference point for that structure; and assigning each of the structures into one of a plurality of groups based on the displacement.