Abstract:
With the advent of virtualization technologies, networks and routing for those networks can now be simulated using commodity hardware. For example, virtualization technologies can be adapted to allow a single physical computing machine to be shared among multiple virtual networks by providing one or more virtual machines simulated in software by the single physical computing machine, with each virtual machine acting as a distinct logical computing system. In addition, as routing can be accomplished through software, additional network setup flexibility can be provided to the virtual network in comparison with hardware-based routing. In some implementations, virtual network setup can be abstracted through the use of resource placement templates, allowing users to create virtual networks compliant with a customer's networking policies without necessarily having knowledge of what those policies are.
Abstract:
Techniques are described for facilitating use of software components by software applications in a configurable manner. In some situations, the software components are fee-based components that are made available by providers of the components for use by others in exchange for fees defined by the components providers, and in at least some situations, the software components may have various associated restrictions or other non-price conditions related to their use. The described techniques facilitate use of such software components by software applications in a configured manner. Furthermore, in at least some situation, the execution of such software applications is managed by an application deployment system that controls and tracks the execution of the software application on one or more computing nodes, including to manage the execution of any software components that are part of the software application.
Abstract:
The deployment of content and computing resources for implementing a distributed software application can be optimized based upon customer location. The volume and geographic origin of incoming requests for a distributed software application are determined. Based upon the volume and geographic origin of the incoming requests, content and/or one or more instances of the distributed software application may be deployed to a geographic region generating a significant volume of requests for the distributed software application. Content and/or instances of a distributed software application might also be speculatively deployed to a geographic region in an attempt to optimize the performance, cost, or other attribute of a distributed software application.
Abstract:
A first identity claim and a first attempt to prove password possession are received. As a result of determining that the first attempt to prove password possession is a match to a password in a set of passwords, but that the first identity claim is a mismatch to an identity that corresponds to the password, an authentication process that includes incrementing a counter associated with the password is performed. A second identity claim and a second attempt to prove password possession is received. As a result of determining that the second attempt to prove password possession is a match to the password, an authentication process that includes incrementing the counter associated with the password only if the second identity claim is a mismatch to the first identity claim is performed.
Abstract:
Network computing systems may implement data loss prevention (DLP) techniques to reduce or prevent unauthorized use or transmission of confidential information or to implement information controls mandated by statute, regulation, or industry standard. Implementations of network data transmission analysis systems and methods are disclosed that can use contextual information in a DLP policy to monitor data transmitted via the network. The contextual information may include information based on a network user's organizational structure or services or network infrastructure. Some implementations may detect bank card information in network data transmissions. Some of the systems and methods may be implemented on a virtual network overlaid on one or more intermediate physical networks that are used as a substrate network.
Abstract:
Systems and methods are provided for managing objects. In one implementation, a computer-implemented method is provided. The method includes receiving a query comprising a tag and executing the query. An object identifier is retrieved from a data table, based on the tag. The method further returns a result of the query. The result includes the object identifier that was retrieved from the data table. The method further performing an action related to an object having the retrieved object identifier.
Abstract:
Client requests may be directed through a secret holding proxy system such that the secret holding proxy system may insert a secret into a client request before arriving at the destination. The insertion of a secret may include inserting a digital signature, token or other information that includes a secret or information based upon a secret, which may include secret exchange or authentication protocols. The secret holding proxy system may also remove secrets and/or transform incoming messages such that the client may transparently receive the underlying content of the message.
Abstract:
A first identity claim and a first attempt to prove password possession are received. As a result of determining that the first attempt to prove password possession is a match to a password in a set of passwords, but that the first identity claim is a mismatch to an identity that corresponds to the password, an authentication process that includes incrementing a counter associated with the password is performed. A second identity claim and a second attempt to prove password possession is received. As a result of determining that the second attempt to prove password possession is a match to the password, an authentication process that includes incrementing the counter associated with the password only if the second identity claim is a mismatch to the first identity claim is performed.
Abstract:
Functionality is disclosed herein for providing a resource monitoring environment that restricts access to computing resource data in a service provider network. The resource monitoring environment processes requests to access computing resource data, and denies requests not signed or authorized by a customer of a service provider network or other entity. Access to the computing resource data includes access to non-obfuscated data and/or access to encrypted computing resource data encrypted by way of a public encryption key held by a customer of the service provider network or other entity instead of a requestor of the computing resource data.
Abstract:
Update preferences might be utilized to specify that an update to an application should not be applied until the demand for the application falls below a certain threshold. Demand for the application is monitored. The update to the application is applied when the actual demand for the application falls below the specified threshold. The threshold might be set such that updates are deployed during the off-peak periods of demand encountered during a regular demand cycle, such as a diurnal, monthly, or yearly cycle.