Abstract:
A plurality of granules comprising ceramic particles bound together with an inorganic binder, the inorganic binder comprising reaction product of at least alkali silicate and hardener, wherein the ceramic particles are present as at least 50 percent by weight of each granule, based on the total weight of the respective granule, wherein each granule has a total porosity in a range from greater than 0 to 50 percent by volume, based on the total volume of the respective granule, and wherein the granule has a minimum Total Solar Reflectance of at least 0.7. The granules are useful, for example, as roofing granules.
Abstract:
The disclosed retroreflective element includes a polymeric core that is loaded with a plurality of first beads and second beads distributed at the perimeter of the core. The first beads are different than the second beads. Because of the beads in the core, the retroreflective element remains useful for returning light even after portions of the core begins to wear away. Further, when the retroreflective elements get wet, water will settle to the bottom of the perimeter of the core. Therefore, using the second beads with a refractive index suited for wet conditions, while the first beads have a refractive index suited for dry conditions allows the retroreflective element to be useful in both wet and dry conditions even while the retroreflective element wears during use.
Abstract:
To provide transparent solid spheres with high refractive index and large particle size. The transparent solid spheres of one aspect of the present disclosure include barium oxide, zirconium dioxide, and titanium dioxide on a theoretical oxide basis, and has a refractive index of at least 2.0 and a particle size of 600 micrometers or greater.
Abstract:
Article comprising composite particles in an organic polymer matrix comprising a cured thiol-alkene resin having a Tg>20° C., the composite particles comprising a hydrophobic nonmetallic inorganic matrix, ligands, and quantum dots, wherein the hydrophobic nonmetallic inorganic matrix is present in the composite particles in an amount of up to 40 volume percent. Exemplary articles described herein can be made for use for display applications such as films, LED caps, LED coatings, LED lenses, and light guides. Exemplary articles described herein can be made for use for non-display applications such as security applications where quantum dot phosphors are used to provide fluorescence at selected or tailored wavelengths. In such uses, the organic polymer matrix could be a label or a coating on a label, or other articles such as a card or tag.
Abstract:
Conductive particles, articles including such particles, and methods of making such conductive particles, are provided; wherein the conductive particles include: a core particle including at least one of a glass, a glass-ceramic, or a metal; surface particles adhered to the core particle; and a metal coating disposed on at least a portion of the core and surface particles; wherein the core particle is larger than the surface particles.
Abstract:
A (e.g. hardenable dental) composition is described comprising (e.g. a first part comprising) an encapsulated material wherein the encapsulated material comprises a basic core material and an inorganic shell material comprising a metal oxide surrounding the core; and (e.g. a second part comprising) water or an acidic component. Also described is an encapsulated material (e.g. suitable for use in a biological carrier material) comprising a basic core material and an inorganic shell material comprising a metal oxide surrounding the core.
Abstract:
A plurality of granules comprising particulate silicate material bonded together with an inorganic binder, the inorganic binder comprising reaction product of at least alkali silicate and hardener, wherein the hardener is at least one of aluminum phosphate, amorphous aluminosilicate, fluorosilicate, Portland cement, or a calcium silicate, wherein the particulate silicate material is present as at least 50 percent by weight of each granule, based on the total weight of the respective granule, wherein each granule has a total porosity in a range from greater than 0 to 50 percent by volume, based on the total volume of the respective granule, and wherein the granules have Tumble Toughness Value of at least 70 before immersion in water and at least 40 after immersion in water at 20° C.±2° C. for two months. The granules are useful, for example, as roofing granules.
Abstract:
An uncolored roofing granule including a low solar absorption base and a low solar absorption and solar opaque coating presented on the base, the coating including a binder, a pigment, wherein the binder includes a curable component and a non-clay, thermally reactive curing agent.
Abstract:
The present invention is directed to articles, such as retroreflective sheeting articles that comprise a release coating. Also described are release coatings and hydrophilic components suitable for use in release coatings. The release coatings comprise a polyorganosiloxane polymer and at least 10 or 15 wt-% of hydrophilic units.
Abstract:
A plurality of granules comprising ceramic particles bound together with an inorganic binder, the inorganic binder comprising reaction product of at least alkali silicate and hardener, wherein the ceramic particles are present as at least 50 percent by weight of each granule, based on the total weight of the respective granule, wherein each granule has a total porosity in a range from greater than 0 to 50 percent by volume, based on the total volume of the respective granule, and wherein the granule has a minimum Total Solar Reflectance of at least 0.7. The granules are useful, for example, as roofing granules.