Abstract:
An electrode for a touch sensitive device includes micro-wire conductors arranged to define an electrically continuous electrode trunk area, and including branching elements which extend outward from the electrode trunk area. The electrically continuous trunk area is patterned coincident an underlying reference mesh pattern, as are the branching elements.
Abstract:
An electrode layer has a plurality of substantially parallel electrodes disposed along a first direction. At least one electrode has a length along the first direction and a width from a first edge to a second edge along a second direction transverse to the first direction. At least one electrode comprises across its width at least one edge section, at least one intermediate section, and at least one central section, wherein an intermediate section is disposed along the electrode width between an edge section and the central section. At least one electrode edge section and intermediate section includes a plurality of electrically isolated regions arranged in a pattern along the electrode length. An electrode conductive area of the edge section is less than an electrode conductive area of the intermediate section.
Abstract:
Articles comprising a substrate having a first major surface; an electrical conductor pattern on the first major surface of the substrate, the electrical conductor pattern comprising a plurality of separated pairs of separated first and second electrically conductive metallic traces. Optionally the articles further comprise a first electrically conductive layer. Embodiments of articles described herein are useful in, for example, displays, touch sensors, lighting elements, photovoltaic cells, electrochromic windows and displays, and electroluminescent lamps and displays.
Abstract:
In general, techniques are described for filter media monitoring within a filtration system. The filter media monitoring techniques described herein include, for example, direct contact with the filter media, e.g., a sensor may be located inside a boundary defined by a surface of the filter media, or indirect contact with the filter media, e.g., a sensor may be located outside the boundary defined by the surface of the filter media such that the sensor does not make direct physical contact with the filter media being monitored.
Abstract:
In general, techniques are described for filter media monitoring within a filtration system. The filter media monitoring techniques described herein include, for example, direct contact with the filter media, e.g., a sensor may be located inside a boundary defined by a surface of the filter media, or indirect contact with the filter media, e.g., a sensor may be located outside the boundary defined by the surface of the filter media such that the sensor does not make direct physical contact with the filter media being monitored.
Abstract:
A shoe (606) degradation sensor (1012, 608) assembly includes a first sensor (1002) disposed in or proximate to a material layer of a shoe (606) between a foot space and an outer surface of the shoe (606). The material layer changes in at least one physical property with degradation to the shoe (606), and the first sensor (1002) is configured to indicate the changing physical property of the material layer thereby indicating a degree of degradation to the shoe (606).
Abstract:
Articles comprising a substrate having a first major surface; an electrical conductor pattern on the first major surface of the substrate, the electrical conductor pattern comprising a plurality of separated pairs of separated first and second electrically conductive metallic traces. Optionally the articles further comprise a first electrically conductive layer. Embodiments of articles described herein are useful in, for example, displays, touch sensors, lighting elements, photovoltaic cells, electrochromic windows and displays, and electroluminescent lamps and displays.
Abstract:
In general, techniques are described for filter media monitoring within a filtration system. The filter media monitoring techniques described herein include, for example, direct contact with the filter media, e.g., a sensor may be located inside a boundary defined by a surface of the filter media, or indirect contact with the filter media, e.g., a sensor may be located outside the boundary defined by the surface of the filter media such that the sensor does not make direct physical contact with the filter media being monitored.
Abstract:
An electrode for a touch sensitive device includes micro-wire conductors arranged to define an electrically continuous area and to include interior regions that are electrically discontinuous. The electrically continuous area may be patterned according to a one pattern, and the interior pattern may be patterned according to another pattern.
Abstract:
An electrode for a touch sensitive device includes micro-wire conductors arranged to define an electrically continuous area and to include interior regions that are electrically discontinuous. The electrically continuous area may be patterned according to a one pattern, and the interior pattern may be patterned according to another pattern.