Abstract:
A pixel circuit has an organic light emitting diode, a driving transistor, a capacitor and a first switch. The organic light emitting diode has a first end coupled to a first power source terminal. The driving transistor has a source and a drain respectively coupled to a second power source terminal and a second end of the light emitting diode. The capacitor couples a gate of the driving transistor to a reference voltage terminal. The first switch couples the second end of the light emitting diode to the capacitor, and couples the gate and the drain of the driving transistor together when a first scan signal is asserted.
Abstract:
One embodiment of the invention includes an image compensation module, an OLED display panel, and an OLED display apparatus. A target current value corresponding to a target gray level is stored in a compensation memory portion. A reference gray level and a reference current value corresponding to the reference gray level are stored in a reference memory portion. A compensation gray level can be obtained by an arithmetic compensation unit according to the target current value, reference gray level, reference current value, and gamma parameter. This may reduce the memory space needed for the compensation and reference memory portions, and compensate the images of the display apparatus and panel so that precise colors can be displayed with a high image quality.
Abstract:
A data driver for an OLED display has a resistor string, digital-to-analog converters and converting transistors. The resistor string provides a set of gamma voltages. Each of the digital-to-analog converters converts an input word into an output voltage selected from the gamma voltages. Each of the converting transistors conducts a driving current and having a gate-to-source voltage determined by the output voltage from one of the digital-to-analog converters. A method of data driving for an OLED display is also disclosed.
Abstract:
A pixel circuit has an organic light emitting diode, a driving transistor, a capacitor and a first switch. The organic light emitting diode has a first end coupled to a first power source terminal. The driving transistor has a source and a drain respectively coupled to a second power source terminal and a second end of the light emitting diode. The capacitor couples a gate of the driving transistor to a reference voltage terminal. The first switch couples the second end of the light emitting diode to the capacitor, and couples the gate and the drain of the driving transistor together when a first scan signal is asserted.
Abstract:
A pixel circuit has a light emitting diode, a first driving transistor, a second driving transistor, a capacitor, and a switch unit. When a scan signal is asserted, the switch unit couples sources/drains of the second driving transistor respectively to a first and a second source/drain of the first driving transistor, and couples a gate and second source/drain of the first driving transistor together. When the scan signal is de-asserted, the switch unit decouples one of the sources/drains of the second driving transistor from the first/second source/drain of the first driving transistor, and decouples the gate from the second source/drain of the first driving transistor.
Abstract:
A pixel circuit has a light emitting diode, a first driving transistor, a second driving transistor, a capacitor, and a switch unit. When a scan signal is asserted, the switch unit couples sources/drains of the second driving transistor respectively to a first and a second source/drain of the first driving transistor, and couples a gate and second source/drain of the first driving transistor together. When the scan signal is de-asserted, the switch unit decouples one of the sources/drains of the second driving transistor from the first/second source/drain of the first driving transistor, and decouples the gate from the second source/drain of the first driving transistor.
Abstract:
An output stage circuit of a data driver for an display is provided. The circuit includes a current mirror having a first transistor and a current source on a reference current path, having a second transistor on an output current path, wherein the reference and output current paths are commonly coupled to a power line, a capacitor having a first end coupled to the power line and a second end coupled to a gate of the second transistor, a first switch cutting off the output current path during a first period, and a second switch coupling the second end of the capacitor to the current source during the first period.
Abstract:
One embodiment of the invention includes an image compensation module, an OLED display panel, and an OLED display apparatus. A target current value corresponding to a target gray level is stored in a compensation memory portion. A reference gray level and a reference current value corresponding to the reference gray level are stored in a reference memory portion. A compensation gray level can be obtained by an arithmetic compensation unit according to the target current value, reference gray level, reference current value, and gamma parameter. This may reduce the memory space needed for the compensation and reference memory portions, and compensate the images of the display apparatus and panel so that precise colors can be displayed with a high image quality.
Abstract:
A display apparatus has several light emitting elements and several lenses. The light emitting elements generate light of a first and second part of a frame respectively during a first and second period. The lenses pass through by the light from the light emitting elements, and operate to form images of the first and second part of the frame at a first and second location during the first and second period, respectively.
Abstract:
A display driving circuit has a scan switch, an assistant unit, several storage switches, and several storage units. The scan switch couples to a data line. The assistant unit couples to the scan switch. The storage switches couple to the assistant unit. Each storage unit couples to the assistant unit by one of the storage switches. The assistant unit is shared by the storage units to compensate for several driving voltages or several driving currents of the storage units.